Loading…

Freeze-Thaw Effect on Riverbank Stability

The stability of riverbanks in cold regions is affected by the freeze-thaw action. The freeze-thaw process causes changes in the moisture content, friction angle, and cohesiveness of the bank material. Together with the freeze-thaw effect, seepage pressure influenced by the changing water levels, an...

Full description

Saved in:
Bibliographic Details
Published in:Water (Basel) 2022-08, Vol.14 (16), p.2479
Main Authors: Li, Chao, Yang, Zhen, Shen, Hung Tao, Mou, Xianyou
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The stability of riverbanks in cold regions is affected by the freeze-thaw action. The freeze-thaw process causes changes in the moisture content, friction angle, and cohesiveness of the bank material. Together with the freeze-thaw effect, seepage pressure influenced by the changing water levels, and the bank slope are the key factors affecting bank stability. A limit equilibrium bank stability model considering the infiltration water pressure effect is developed and applied to the Shisifenzi section of Inner Mongolia reach of the Yellow River. Laboratory tests of field samples with moisture contents of 15%, 18%, 21%, and saturated showed that the freeze-thaw action reduced the degree of saturation by 34.37 %, 30.71%, 32.48%, and 46.23%, respectively, accompanied by reductions in the internal friction angles by 1.78%, 2.74%, 6.33%, and 5.32%. These changes resulted in a 24.35% to 29.13% reduction in the safety factor of bank stability. Together with seasonal variations in the water levels the field data showed that the bank stability safety factor in the study site increases gradually through the melting period, dry period, wet period, flooding period, and low flow period. The slope stability safety factor increases with the stage of the river but decreases with the groundwater level.
ISSN:2073-4441
2073-4441
DOI:10.3390/w14162479