Loading…

Nonlinear Bending and Stability of Prolate Semi-Ellipsoidal Shells under External Pressure and Temperature

Non-linear bending and stability of the clamped prolate semi-ellipsoidal domes with different wall thickness under uniform external pressure and temperature change are considered. The whole analysis is performed numerically using combination of the successive approximation method, linearization and...

Full description

Saved in:
Bibliographic Details
Published in:Lobachevskii journal of mathematics 2022-05, Vol.43 (5), p.1159-1164
Main Authors: Moiseeva, V. E., Skvortsova, Z. V.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c246t-45b0989b3925bf69f685437ea9fede257de7e749edf81b9190d46d59a704e80d3
cites cdi_FETCH-LOGICAL-c246t-45b0989b3925bf69f685437ea9fede257de7e749edf81b9190d46d59a704e80d3
container_end_page 1164
container_issue 5
container_start_page 1159
container_title Lobachevskii journal of mathematics
container_volume 43
creator Moiseeva, V. E.
Skvortsova, Z. V.
description Non-linear bending and stability of the clamped prolate semi-ellipsoidal domes with different wall thickness under uniform external pressure and temperature change are considered. The whole analysis is performed numerically using combination of the successive approximation method, linearization and orthogonal sweep methods. Unsymmetrical critical pressure is examined at cryogenic and elevated temperatures taking into account dependence of material characteristics on the temperature. The bifurcation loads with number of circumferential waves are determined. We find that the non-axisymmetrical critical loads for all considered domes are larger at cryogenic temperatures and decrease at higher temperatures.
doi_str_mv 10.1134/S1995080222080224
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2706754777</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2706754777</sourcerecordid><originalsourceid>FETCH-LOGICAL-c246t-45b0989b3925bf69f685437ea9fede257de7e749edf81b9190d46d59a704e80d3</originalsourceid><addsrcrecordid>eNp1UFtLwzAUDqLgnP4A3wI-V5M0TZpHHfMCQwedzyVdTmdGls6kBffvzTbBB_Hl3L4Lhw-ha0puKc35XUWVKkhJGGOHyk_QiJa0zJQS7DTNCc72yDm6iHFNEkUIMULr184760EH_ADeWL_C2htc9bqxzvY73LV4Hjqne8AVbGw2dc5uY2eNdrj6AOciHryBgKdfPQSfrvMAMQ4BDkYL2Gwh6D7tl-is1S7C1U8fo_fH6WLynM3enl4m97NsybjoM140RJWqyRUrmlaoVpQFzyVo1YIBVkgDEiRXYNqSNooqYrgwhdKScCiJycfo5ui7Dd3nALGv192w_yzWTBIhCy6lTCx6ZC1DF2OAtt4Gu9FhV1NS7yOt_0SaNOyoiYnrVxB-nf8XfQPBpnjJ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2706754777</pqid></control><display><type>article</type><title>Nonlinear Bending and Stability of Prolate Semi-Ellipsoidal Shells under External Pressure and Temperature</title><source>Springer Link</source><creator>Moiseeva, V. E. ; Skvortsova, Z. V.</creator><creatorcontrib>Moiseeva, V. E. ; Skvortsova, Z. V.</creatorcontrib><description>Non-linear bending and stability of the clamped prolate semi-ellipsoidal domes with different wall thickness under uniform external pressure and temperature change are considered. The whole analysis is performed numerically using combination of the successive approximation method, linearization and orthogonal sweep methods. Unsymmetrical critical pressure is examined at cryogenic and elevated temperatures taking into account dependence of material characteristics on the temperature. The bifurcation loads with number of circumferential waves are determined. We find that the non-axisymmetrical critical loads for all considered domes are larger at cryogenic temperatures and decrease at higher temperatures.</description><identifier>ISSN: 1995-0802</identifier><identifier>EISSN: 1818-9962</identifier><identifier>DOI: 10.1134/S1995080222080224</identifier><language>eng</language><publisher>Moscow: Pleiades Publishing</publisher><subject>Algebra ; Analysis ; Bending ; Critical pressure ; Cryogenic temperature ; Domes (structural forms) ; External pressure ; Geometry ; High temperature ; Mathematical Logic and Foundations ; Mathematics ; Mathematics and Statistics ; Probability Theory and Stochastic Processes</subject><ispartof>Lobachevskii journal of mathematics, 2022-05, Vol.43 (5), p.1159-1164</ispartof><rights>Pleiades Publishing, Ltd. 2022</rights><rights>Pleiades Publishing, Ltd. 2022.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c246t-45b0989b3925bf69f685437ea9fede257de7e749edf81b9190d46d59a704e80d3</citedby><cites>FETCH-LOGICAL-c246t-45b0989b3925bf69f685437ea9fede257de7e749edf81b9190d46d59a704e80d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Moiseeva, V. E.</creatorcontrib><creatorcontrib>Skvortsova, Z. V.</creatorcontrib><title>Nonlinear Bending and Stability of Prolate Semi-Ellipsoidal Shells under External Pressure and Temperature</title><title>Lobachevskii journal of mathematics</title><addtitle>Lobachevskii J Math</addtitle><description>Non-linear bending and stability of the clamped prolate semi-ellipsoidal domes with different wall thickness under uniform external pressure and temperature change are considered. The whole analysis is performed numerically using combination of the successive approximation method, linearization and orthogonal sweep methods. Unsymmetrical critical pressure is examined at cryogenic and elevated temperatures taking into account dependence of material characteristics on the temperature. The bifurcation loads with number of circumferential waves are determined. We find that the non-axisymmetrical critical loads for all considered domes are larger at cryogenic temperatures and decrease at higher temperatures.</description><subject>Algebra</subject><subject>Analysis</subject><subject>Bending</subject><subject>Critical pressure</subject><subject>Cryogenic temperature</subject><subject>Domes (structural forms)</subject><subject>External pressure</subject><subject>Geometry</subject><subject>High temperature</subject><subject>Mathematical Logic and Foundations</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Probability Theory and Stochastic Processes</subject><issn>1995-0802</issn><issn>1818-9962</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp1UFtLwzAUDqLgnP4A3wI-V5M0TZpHHfMCQwedzyVdTmdGls6kBffvzTbBB_Hl3L4Lhw-ha0puKc35XUWVKkhJGGOHyk_QiJa0zJQS7DTNCc72yDm6iHFNEkUIMULr184760EH_ADeWL_C2htc9bqxzvY73LV4Hjqne8AVbGw2dc5uY2eNdrj6AOciHryBgKdfPQSfrvMAMQ4BDkYL2Gwh6D7tl-is1S7C1U8fo_fH6WLynM3enl4m97NsybjoM140RJWqyRUrmlaoVpQFzyVo1YIBVkgDEiRXYNqSNooqYrgwhdKScCiJycfo5ui7Dd3nALGv192w_yzWTBIhCy6lTCx6ZC1DF2OAtt4Gu9FhV1NS7yOt_0SaNOyoiYnrVxB-nf8XfQPBpnjJ</recordid><startdate>20220501</startdate><enddate>20220501</enddate><creator>Moiseeva, V. E.</creator><creator>Skvortsova, Z. V.</creator><general>Pleiades Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20220501</creationdate><title>Nonlinear Bending and Stability of Prolate Semi-Ellipsoidal Shells under External Pressure and Temperature</title><author>Moiseeva, V. E. ; Skvortsova, Z. V.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c246t-45b0989b3925bf69f685437ea9fede257de7e749edf81b9190d46d59a704e80d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Algebra</topic><topic>Analysis</topic><topic>Bending</topic><topic>Critical pressure</topic><topic>Cryogenic temperature</topic><topic>Domes (structural forms)</topic><topic>External pressure</topic><topic>Geometry</topic><topic>High temperature</topic><topic>Mathematical Logic and Foundations</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Probability Theory and Stochastic Processes</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Moiseeva, V. E.</creatorcontrib><creatorcontrib>Skvortsova, Z. V.</creatorcontrib><collection>CrossRef</collection><jtitle>Lobachevskii journal of mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Moiseeva, V. E.</au><au>Skvortsova, Z. V.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nonlinear Bending and Stability of Prolate Semi-Ellipsoidal Shells under External Pressure and Temperature</atitle><jtitle>Lobachevskii journal of mathematics</jtitle><stitle>Lobachevskii J Math</stitle><date>2022-05-01</date><risdate>2022</risdate><volume>43</volume><issue>5</issue><spage>1159</spage><epage>1164</epage><pages>1159-1164</pages><issn>1995-0802</issn><eissn>1818-9962</eissn><abstract>Non-linear bending and stability of the clamped prolate semi-ellipsoidal domes with different wall thickness under uniform external pressure and temperature change are considered. The whole analysis is performed numerically using combination of the successive approximation method, linearization and orthogonal sweep methods. Unsymmetrical critical pressure is examined at cryogenic and elevated temperatures taking into account dependence of material characteristics on the temperature. The bifurcation loads with number of circumferential waves are determined. We find that the non-axisymmetrical critical loads for all considered domes are larger at cryogenic temperatures and decrease at higher temperatures.</abstract><cop>Moscow</cop><pub>Pleiades Publishing</pub><doi>10.1134/S1995080222080224</doi><tpages>6</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1995-0802
ispartof Lobachevskii journal of mathematics, 2022-05, Vol.43 (5), p.1159-1164
issn 1995-0802
1818-9962
language eng
recordid cdi_proquest_journals_2706754777
source Springer Link
subjects Algebra
Analysis
Bending
Critical pressure
Cryogenic temperature
Domes (structural forms)
External pressure
Geometry
High temperature
Mathematical Logic and Foundations
Mathematics
Mathematics and Statistics
Probability Theory and Stochastic Processes
title Nonlinear Bending and Stability of Prolate Semi-Ellipsoidal Shells under External Pressure and Temperature
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T05%3A55%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nonlinear%20Bending%20and%20Stability%20of%20Prolate%20Semi-Ellipsoidal%20Shells%20under%20External%20Pressure%20and%20Temperature&rft.jtitle=Lobachevskii%20journal%20of%20mathematics&rft.au=Moiseeva,%20V.%20E.&rft.date=2022-05-01&rft.volume=43&rft.issue=5&rft.spage=1159&rft.epage=1164&rft.pages=1159-1164&rft.issn=1995-0802&rft.eissn=1818-9962&rft_id=info:doi/10.1134/S1995080222080224&rft_dat=%3Cproquest_cross%3E2706754777%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c246t-45b0989b3925bf69f685437ea9fede257de7e749edf81b9190d46d59a704e80d3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2706754777&rft_id=info:pmid/&rfr_iscdi=true