Loading…
Nonlinear Bending and Stability of Prolate Semi-Ellipsoidal Shells under External Pressure and Temperature
Non-linear bending and stability of the clamped prolate semi-ellipsoidal domes with different wall thickness under uniform external pressure and temperature change are considered. The whole analysis is performed numerically using combination of the successive approximation method, linearization and...
Saved in:
Published in: | Lobachevskii journal of mathematics 2022-05, Vol.43 (5), p.1159-1164 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c246t-45b0989b3925bf69f685437ea9fede257de7e749edf81b9190d46d59a704e80d3 |
---|---|
cites | cdi_FETCH-LOGICAL-c246t-45b0989b3925bf69f685437ea9fede257de7e749edf81b9190d46d59a704e80d3 |
container_end_page | 1164 |
container_issue | 5 |
container_start_page | 1159 |
container_title | Lobachevskii journal of mathematics |
container_volume | 43 |
creator | Moiseeva, V. E. Skvortsova, Z. V. |
description | Non-linear bending and stability of the clamped prolate semi-ellipsoidal domes with different wall thickness under uniform external pressure and temperature change are considered. The whole analysis is performed numerically using combination of the successive approximation method, linearization and orthogonal sweep methods. Unsymmetrical critical pressure is examined at cryogenic and elevated temperatures taking into account dependence of material characteristics on the temperature. The bifurcation loads with number of circumferential waves are determined. We find that the non-axisymmetrical critical loads for all considered domes are larger at cryogenic temperatures and decrease at higher temperatures. |
doi_str_mv | 10.1134/S1995080222080224 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2706754777</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2706754777</sourcerecordid><originalsourceid>FETCH-LOGICAL-c246t-45b0989b3925bf69f685437ea9fede257de7e749edf81b9190d46d59a704e80d3</originalsourceid><addsrcrecordid>eNp1UFtLwzAUDqLgnP4A3wI-V5M0TZpHHfMCQwedzyVdTmdGls6kBffvzTbBB_Hl3L4Lhw-ha0puKc35XUWVKkhJGGOHyk_QiJa0zJQS7DTNCc72yDm6iHFNEkUIMULr184760EH_ADeWL_C2htc9bqxzvY73LV4Hjqne8AVbGw2dc5uY2eNdrj6AOciHryBgKdfPQSfrvMAMQ4BDkYL2Gwh6D7tl-is1S7C1U8fo_fH6WLynM3enl4m97NsybjoM140RJWqyRUrmlaoVpQFzyVo1YIBVkgDEiRXYNqSNooqYrgwhdKScCiJycfo5ui7Dd3nALGv192w_yzWTBIhCy6lTCx6ZC1DF2OAtt4Gu9FhV1NS7yOt_0SaNOyoiYnrVxB-nf8XfQPBpnjJ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2706754777</pqid></control><display><type>article</type><title>Nonlinear Bending and Stability of Prolate Semi-Ellipsoidal Shells under External Pressure and Temperature</title><source>Springer Link</source><creator>Moiseeva, V. E. ; Skvortsova, Z. V.</creator><creatorcontrib>Moiseeva, V. E. ; Skvortsova, Z. V.</creatorcontrib><description>Non-linear bending and stability of the clamped prolate semi-ellipsoidal domes with different wall thickness under uniform external pressure and temperature change are considered. The whole analysis is performed numerically using combination of the successive approximation method, linearization and orthogonal sweep methods. Unsymmetrical critical pressure is examined at cryogenic and elevated temperatures taking into account dependence of material characteristics on the temperature. The bifurcation loads with number of circumferential waves are determined. We find that the non-axisymmetrical critical loads for all considered domes are larger at cryogenic temperatures and decrease at higher temperatures.</description><identifier>ISSN: 1995-0802</identifier><identifier>EISSN: 1818-9962</identifier><identifier>DOI: 10.1134/S1995080222080224</identifier><language>eng</language><publisher>Moscow: Pleiades Publishing</publisher><subject>Algebra ; Analysis ; Bending ; Critical pressure ; Cryogenic temperature ; Domes (structural forms) ; External pressure ; Geometry ; High temperature ; Mathematical Logic and Foundations ; Mathematics ; Mathematics and Statistics ; Probability Theory and Stochastic Processes</subject><ispartof>Lobachevskii journal of mathematics, 2022-05, Vol.43 (5), p.1159-1164</ispartof><rights>Pleiades Publishing, Ltd. 2022</rights><rights>Pleiades Publishing, Ltd. 2022.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c246t-45b0989b3925bf69f685437ea9fede257de7e749edf81b9190d46d59a704e80d3</citedby><cites>FETCH-LOGICAL-c246t-45b0989b3925bf69f685437ea9fede257de7e749edf81b9190d46d59a704e80d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Moiseeva, V. E.</creatorcontrib><creatorcontrib>Skvortsova, Z. V.</creatorcontrib><title>Nonlinear Bending and Stability of Prolate Semi-Ellipsoidal Shells under External Pressure and Temperature</title><title>Lobachevskii journal of mathematics</title><addtitle>Lobachevskii J Math</addtitle><description>Non-linear bending and stability of the clamped prolate semi-ellipsoidal domes with different wall thickness under uniform external pressure and temperature change are considered. The whole analysis is performed numerically using combination of the successive approximation method, linearization and orthogonal sweep methods. Unsymmetrical critical pressure is examined at cryogenic and elevated temperatures taking into account dependence of material characteristics on the temperature. The bifurcation loads with number of circumferential waves are determined. We find that the non-axisymmetrical critical loads for all considered domes are larger at cryogenic temperatures and decrease at higher temperatures.</description><subject>Algebra</subject><subject>Analysis</subject><subject>Bending</subject><subject>Critical pressure</subject><subject>Cryogenic temperature</subject><subject>Domes (structural forms)</subject><subject>External pressure</subject><subject>Geometry</subject><subject>High temperature</subject><subject>Mathematical Logic and Foundations</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Probability Theory and Stochastic Processes</subject><issn>1995-0802</issn><issn>1818-9962</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp1UFtLwzAUDqLgnP4A3wI-V5M0TZpHHfMCQwedzyVdTmdGls6kBffvzTbBB_Hl3L4Lhw-ha0puKc35XUWVKkhJGGOHyk_QiJa0zJQS7DTNCc72yDm6iHFNEkUIMULr184760EH_ADeWL_C2htc9bqxzvY73LV4Hjqne8AVbGw2dc5uY2eNdrj6AOciHryBgKdfPQSfrvMAMQ4BDkYL2Gwh6D7tl-is1S7C1U8fo_fH6WLynM3enl4m97NsybjoM140RJWqyRUrmlaoVpQFzyVo1YIBVkgDEiRXYNqSNooqYrgwhdKScCiJycfo5ui7Dd3nALGv192w_yzWTBIhCy6lTCx6ZC1DF2OAtt4Gu9FhV1NS7yOt_0SaNOyoiYnrVxB-nf8XfQPBpnjJ</recordid><startdate>20220501</startdate><enddate>20220501</enddate><creator>Moiseeva, V. E.</creator><creator>Skvortsova, Z. V.</creator><general>Pleiades Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20220501</creationdate><title>Nonlinear Bending and Stability of Prolate Semi-Ellipsoidal Shells under External Pressure and Temperature</title><author>Moiseeva, V. E. ; Skvortsova, Z. V.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c246t-45b0989b3925bf69f685437ea9fede257de7e749edf81b9190d46d59a704e80d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Algebra</topic><topic>Analysis</topic><topic>Bending</topic><topic>Critical pressure</topic><topic>Cryogenic temperature</topic><topic>Domes (structural forms)</topic><topic>External pressure</topic><topic>Geometry</topic><topic>High temperature</topic><topic>Mathematical Logic and Foundations</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Probability Theory and Stochastic Processes</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Moiseeva, V. E.</creatorcontrib><creatorcontrib>Skvortsova, Z. V.</creatorcontrib><collection>CrossRef</collection><jtitle>Lobachevskii journal of mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Moiseeva, V. E.</au><au>Skvortsova, Z. V.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nonlinear Bending and Stability of Prolate Semi-Ellipsoidal Shells under External Pressure and Temperature</atitle><jtitle>Lobachevskii journal of mathematics</jtitle><stitle>Lobachevskii J Math</stitle><date>2022-05-01</date><risdate>2022</risdate><volume>43</volume><issue>5</issue><spage>1159</spage><epage>1164</epage><pages>1159-1164</pages><issn>1995-0802</issn><eissn>1818-9962</eissn><abstract>Non-linear bending and stability of the clamped prolate semi-ellipsoidal domes with different wall thickness under uniform external pressure and temperature change are considered. The whole analysis is performed numerically using combination of the successive approximation method, linearization and orthogonal sweep methods. Unsymmetrical critical pressure is examined at cryogenic and elevated temperatures taking into account dependence of material characteristics on the temperature. The bifurcation loads with number of circumferential waves are determined. We find that the non-axisymmetrical critical loads for all considered domes are larger at cryogenic temperatures and decrease at higher temperatures.</abstract><cop>Moscow</cop><pub>Pleiades Publishing</pub><doi>10.1134/S1995080222080224</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1995-0802 |
ispartof | Lobachevskii journal of mathematics, 2022-05, Vol.43 (5), p.1159-1164 |
issn | 1995-0802 1818-9962 |
language | eng |
recordid | cdi_proquest_journals_2706754777 |
source | Springer Link |
subjects | Algebra Analysis Bending Critical pressure Cryogenic temperature Domes (structural forms) External pressure Geometry High temperature Mathematical Logic and Foundations Mathematics Mathematics and Statistics Probability Theory and Stochastic Processes |
title | Nonlinear Bending and Stability of Prolate Semi-Ellipsoidal Shells under External Pressure and Temperature |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T05%3A55%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nonlinear%20Bending%20and%20Stability%20of%20Prolate%20Semi-Ellipsoidal%20Shells%20under%20External%20Pressure%20and%20Temperature&rft.jtitle=Lobachevskii%20journal%20of%20mathematics&rft.au=Moiseeva,%20V.%20E.&rft.date=2022-05-01&rft.volume=43&rft.issue=5&rft.spage=1159&rft.epage=1164&rft.pages=1159-1164&rft.issn=1995-0802&rft.eissn=1818-9962&rft_id=info:doi/10.1134/S1995080222080224&rft_dat=%3Cproquest_cross%3E2706754777%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c246t-45b0989b3925bf69f685437ea9fede257de7e749edf81b9190d46d59a704e80d3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2706754777&rft_id=info:pmid/&rfr_iscdi=true |