Loading…

On \( \rho \)-conjugate Hopf-Galois structures

The Hopf-Galois structures admitted by a Galois extension of fields \( L/K \) with Galois group \( G \) correspond bijectively with certain subgroups of \( \mathrm{Perm}(G) \). We use a natural partition of the set of such subgroups to obtain a method for partitioning the set of corresponding Hopf-G...

Full description

Saved in:
Bibliographic Details
Published in:arXiv.org 2022-08
Main Author: Truman, Paul J
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Truman, Paul J
description The Hopf-Galois structures admitted by a Galois extension of fields \( L/K \) with Galois group \( G \) correspond bijectively with certain subgroups of \( \mathrm{Perm}(G) \). We use a natural partition of the set of such subgroups to obtain a method for partitioning the set of corresponding Hopf-Galois structures, which we term \( \rho \)-conjugation. We study properties of this construction, with particular emphasis on the Hopf-Galois analogue of the Galois correspondence, the connection with skew left braces, and applications to questions of integral module structure in extensions of local or global fields. In particular, we show that the number of distinct \( \rho \)-conjugates of a given Hopf-Galois structure is determined by the corresponding skew left brace, and that if \( H, H' \) are Hopf algebras giving \( \rho \)-conjugate Hopf-Galois structures on a Galois extension of local or global fields \( L/K \) then an ambiguous ideal \( \mathfrak{B} \) of \( L \) is free over its associated order in \( H \) if and only if it is free over its associated order in \( H' \). We exhibit a variety of examples arising from interactions with existing constructions in the literature.
format article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2706990270</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2706990270</sourcerecordid><originalsourceid>FETCH-proquest_journals_27069902703</originalsourceid><addsrcrecordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mTQ889TiNFQiCnKyFeI0dRNzs_LKk1PLElV8MgvSNN1T8zJzyxWKC4pKk0uKS1KLeZhYE1LzClO5YXS3AzKbq4hzh66BUX5haWpxSXxWfmlRXlAqXgjcwMzS0sDIGVMnCoAeUgxfA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2706990270</pqid></control><display><type>article</type><title>On \( \rho \)-conjugate Hopf-Galois structures</title><source>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</source><creator>Truman, Paul J</creator><creatorcontrib>Truman, Paul J</creatorcontrib><description>The Hopf-Galois structures admitted by a Galois extension of fields \( L/K \) with Galois group \( G \) correspond bijectively with certain subgroups of \( \mathrm{Perm}(G) \). We use a natural partition of the set of such subgroups to obtain a method for partitioning the set of corresponding Hopf-Galois structures, which we term \( \rho \)-conjugation. We study properties of this construction, with particular emphasis on the Hopf-Galois analogue of the Galois correspondence, the connection with skew left braces, and applications to questions of integral module structure in extensions of local or global fields. In particular, we show that the number of distinct \( \rho \)-conjugates of a given Hopf-Galois structure is determined by the corresponding skew left brace, and that if \( H, H' \) are Hopf algebras giving \( \rho \)-conjugate Hopf-Galois structures on a Galois extension of local or global fields \( L/K \) then an ambiguous ideal \( \mathfrak{B} \) of \( L \) is free over its associated order in \( H \) if and only if it is free over its associated order in \( H' \). We exhibit a variety of examples arising from interactions with existing constructions in the literature.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Conjugates ; Conjugation ; Subgroups</subject><ispartof>arXiv.org, 2022-08</ispartof><rights>2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2706990270?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>780,784,25753,37012,44590</link.rule.ids></links><search><creatorcontrib>Truman, Paul J</creatorcontrib><title>On \( \rho \)-conjugate Hopf-Galois structures</title><title>arXiv.org</title><description>The Hopf-Galois structures admitted by a Galois extension of fields \( L/K \) with Galois group \( G \) correspond bijectively with certain subgroups of \( \mathrm{Perm}(G) \). We use a natural partition of the set of such subgroups to obtain a method for partitioning the set of corresponding Hopf-Galois structures, which we term \( \rho \)-conjugation. We study properties of this construction, with particular emphasis on the Hopf-Galois analogue of the Galois correspondence, the connection with skew left braces, and applications to questions of integral module structure in extensions of local or global fields. In particular, we show that the number of distinct \( \rho \)-conjugates of a given Hopf-Galois structure is determined by the corresponding skew left brace, and that if \( H, H' \) are Hopf algebras giving \( \rho \)-conjugate Hopf-Galois structures on a Galois extension of local or global fields \( L/K \) then an ambiguous ideal \( \mathfrak{B} \) of \( L \) is free over its associated order in \( H \) if and only if it is free over its associated order in \( H' \). We exhibit a variety of examples arising from interactions with existing constructions in the literature.</description><subject>Conjugates</subject><subject>Conjugation</subject><subject>Subgroups</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mTQ889TiNFQiCnKyFeI0dRNzs_LKk1PLElV8MgvSNN1T8zJzyxWKC4pKk0uKS1KLeZhYE1LzClO5YXS3AzKbq4hzh66BUX5haWpxSXxWfmlRXlAqXgjcwMzS0sDIGVMnCoAeUgxfA</recordid><startdate>20220825</startdate><enddate>20220825</enddate><creator>Truman, Paul J</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20220825</creationdate><title>On \( \rho \)-conjugate Hopf-Galois structures</title><author>Truman, Paul J</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_27069902703</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Conjugates</topic><topic>Conjugation</topic><topic>Subgroups</topic><toplevel>online_resources</toplevel><creatorcontrib>Truman, Paul J</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Truman, Paul J</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>On \( \rho \)-conjugate Hopf-Galois structures</atitle><jtitle>arXiv.org</jtitle><date>2022-08-25</date><risdate>2022</risdate><eissn>2331-8422</eissn><abstract>The Hopf-Galois structures admitted by a Galois extension of fields \( L/K \) with Galois group \( G \) correspond bijectively with certain subgroups of \( \mathrm{Perm}(G) \). We use a natural partition of the set of such subgroups to obtain a method for partitioning the set of corresponding Hopf-Galois structures, which we term \( \rho \)-conjugation. We study properties of this construction, with particular emphasis on the Hopf-Galois analogue of the Galois correspondence, the connection with skew left braces, and applications to questions of integral module structure in extensions of local or global fields. In particular, we show that the number of distinct \( \rho \)-conjugates of a given Hopf-Galois structure is determined by the corresponding skew left brace, and that if \( H, H' \) are Hopf algebras giving \( \rho \)-conjugate Hopf-Galois structures on a Galois extension of local or global fields \( L/K \) then an ambiguous ideal \( \mathfrak{B} \) of \( L \) is free over its associated order in \( H \) if and only if it is free over its associated order in \( H' \). We exhibit a variety of examples arising from interactions with existing constructions in the literature.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2022-08
issn 2331-8422
language eng
recordid cdi_proquest_journals_2706990270
source Publicly Available Content Database (Proquest) (PQ_SDU_P3)
subjects Conjugates
Conjugation
Subgroups
title On \( \rho \)-conjugate Hopf-Galois structures
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T17%3A17%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=On%20%5C(%20%5Crho%20%5C)-conjugate%20Hopf-Galois%20structures&rft.jtitle=arXiv.org&rft.au=Truman,%20Paul%20J&rft.date=2022-08-25&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2706990270%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-proquest_journals_27069902703%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2706990270&rft_id=info:pmid/&rfr_iscdi=true