Loading…

On Poisson transform for spinors

Let \((\tau,V_\tau)\) be a spinor representation of \(\mathrm{Spin}(n)\) and let \((\sigma,V_\sigma)\) be a spinor representation of \(\mathrm{Spin}(n-1)\) that occurs in the restriction \(\tau_{\mid \mathrm{Spin}(n-1)}\). We consider the real hyperbolic space \(H^n(\mathbb R)\) as the rank one homo...

Full description

Saved in:
Bibliographic Details
Published in:arXiv.org 2022-08
Main Authors: Salem Bensaïd, Boussejra, Abdelhamid, Koufany, Khalid
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Salem Bensaïd
Boussejra, Abdelhamid
Koufany, Khalid
description Let \((\tau,V_\tau)\) be a spinor representation of \(\mathrm{Spin}(n)\) and let \((\sigma,V_\sigma)\) be a spinor representation of \(\mathrm{Spin}(n-1)\) that occurs in the restriction \(\tau_{\mid \mathrm{Spin}(n-1)}\). We consider the real hyperbolic space \(H^n(\mathbb R)\) as the rank one homogeneous space \(\mathrm{Spin}_0(1,n)/\mathrm{Spin}(n)\) and the spinor bundle \(\Sigma H^n(\mathbb R)\) over \(H^n(\mathbb R)\) as the homogeneous bundle \(\mathrm{Spin}_0(1,n)\times_{\mathrm{Spin}(n)} V_\tau\). Our aim is to characterize eigenspinors of the algebra of invariant differential operators acting on \(\Sigma H^n(\mathbb R)\) which can be written as the Poisson transform of \(L^p\)-sections of the bundle \(\mathrm{Spin}(n)\times_{\mathrm{Spin}(n-1)} V_\sigma\) over the boundary \(S^{n-1}\simeq \mathrm{Spin}(n)/\mathrm{Spin}(n-1)\) of \(H^n(\mathbb R)\), for \(1
format article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2706990290</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2706990290</sourcerecordid><originalsourceid>FETCH-proquest_journals_27069902903</originalsourceid><addsrcrecordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mRQ8M9TCMjPLC7Oz1MoKUrMK07LL8pVABIKxQWZeflFxTwMrGmJOcWpvFCam0HZzTXE2UO3oCi_sDS1uCQ-K7-0KA8oFW9kbmBmaWlgZGlgTJwqAArvLVY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2706990290</pqid></control><display><type>article</type><title>On Poisson transform for spinors</title><source>Publicly Available Content (ProQuest)</source><creator>Salem Bensaïd ; Boussejra, Abdelhamid ; Koufany, Khalid</creator><creatorcontrib>Salem Bensaïd ; Boussejra, Abdelhamid ; Koufany, Khalid</creatorcontrib><description>Let \((\tau,V_\tau)\) be a spinor representation of \(\mathrm{Spin}(n)\) and let \((\sigma,V_\sigma)\) be a spinor representation of \(\mathrm{Spin}(n-1)\) that occurs in the restriction \(\tau_{\mid \mathrm{Spin}(n-1)}\). We consider the real hyperbolic space \(H^n(\mathbb R)\) as the rank one homogeneous space \(\mathrm{Spin}_0(1,n)/\mathrm{Spin}(n)\) and the spinor bundle \(\Sigma H^n(\mathbb R)\) over \(H^n(\mathbb R)\) as the homogeneous bundle \(\mathrm{Spin}_0(1,n)\times_{\mathrm{Spin}(n)} V_\tau\). Our aim is to characterize eigenspinors of the algebra of invariant differential operators acting on \(\Sigma H^n(\mathbb R)\) which can be written as the Poisson transform of \(L^p\)-sections of the bundle \(\mathrm{Spin}(n)\times_{\mathrm{Spin}(n-1)} V_\sigma\) over the boundary \(S^{n-1}\simeq \mathrm{Spin}(n)/\mathrm{Spin}(n-1)\) of \(H^n(\mathbb R)\), for \(1&lt;p&lt;\infty\).</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Differential equations ; Hyperbolic coordinates ; Operators (mathematics) ; Representations</subject><ispartof>arXiv.org, 2022-08</ispartof><rights>2022. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2706990290?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>776,780,25732,36991,44569</link.rule.ids></links><search><creatorcontrib>Salem Bensaïd</creatorcontrib><creatorcontrib>Boussejra, Abdelhamid</creatorcontrib><creatorcontrib>Koufany, Khalid</creatorcontrib><title>On Poisson transform for spinors</title><title>arXiv.org</title><description>Let \((\tau,V_\tau)\) be a spinor representation of \(\mathrm{Spin}(n)\) and let \((\sigma,V_\sigma)\) be a spinor representation of \(\mathrm{Spin}(n-1)\) that occurs in the restriction \(\tau_{\mid \mathrm{Spin}(n-1)}\). We consider the real hyperbolic space \(H^n(\mathbb R)\) as the rank one homogeneous space \(\mathrm{Spin}_0(1,n)/\mathrm{Spin}(n)\) and the spinor bundle \(\Sigma H^n(\mathbb R)\) over \(H^n(\mathbb R)\) as the homogeneous bundle \(\mathrm{Spin}_0(1,n)\times_{\mathrm{Spin}(n)} V_\tau\). Our aim is to characterize eigenspinors of the algebra of invariant differential operators acting on \(\Sigma H^n(\mathbb R)\) which can be written as the Poisson transform of \(L^p\)-sections of the bundle \(\mathrm{Spin}(n)\times_{\mathrm{Spin}(n-1)} V_\sigma\) over the boundary \(S^{n-1}\simeq \mathrm{Spin}(n)/\mathrm{Spin}(n-1)\) of \(H^n(\mathbb R)\), for \(1&lt;p&lt;\infty\).</description><subject>Differential equations</subject><subject>Hyperbolic coordinates</subject><subject>Operators (mathematics)</subject><subject>Representations</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mRQ8M9TCMjPLC7Oz1MoKUrMK07LL8pVABIKxQWZeflFxTwMrGmJOcWpvFCam0HZzTXE2UO3oCi_sDS1uCQ-K7-0KA8oFW9kbmBmaWlgZGlgTJwqAArvLVY</recordid><startdate>20220831</startdate><enddate>20220831</enddate><creator>Salem Bensaïd</creator><creator>Boussejra, Abdelhamid</creator><creator>Koufany, Khalid</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20220831</creationdate><title>On Poisson transform for spinors</title><author>Salem Bensaïd ; Boussejra, Abdelhamid ; Koufany, Khalid</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_27069902903</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Differential equations</topic><topic>Hyperbolic coordinates</topic><topic>Operators (mathematics)</topic><topic>Representations</topic><toplevel>online_resources</toplevel><creatorcontrib>Salem Bensaïd</creatorcontrib><creatorcontrib>Boussejra, Abdelhamid</creatorcontrib><creatorcontrib>Koufany, Khalid</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Salem Bensaïd</au><au>Boussejra, Abdelhamid</au><au>Koufany, Khalid</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>On Poisson transform for spinors</atitle><jtitle>arXiv.org</jtitle><date>2022-08-31</date><risdate>2022</risdate><eissn>2331-8422</eissn><abstract>Let \((\tau,V_\tau)\) be a spinor representation of \(\mathrm{Spin}(n)\) and let \((\sigma,V_\sigma)\) be a spinor representation of \(\mathrm{Spin}(n-1)\) that occurs in the restriction \(\tau_{\mid \mathrm{Spin}(n-1)}\). We consider the real hyperbolic space \(H^n(\mathbb R)\) as the rank one homogeneous space \(\mathrm{Spin}_0(1,n)/\mathrm{Spin}(n)\) and the spinor bundle \(\Sigma H^n(\mathbb R)\) over \(H^n(\mathbb R)\) as the homogeneous bundle \(\mathrm{Spin}_0(1,n)\times_{\mathrm{Spin}(n)} V_\tau\). Our aim is to characterize eigenspinors of the algebra of invariant differential operators acting on \(\Sigma H^n(\mathbb R)\) which can be written as the Poisson transform of \(L^p\)-sections of the bundle \(\mathrm{Spin}(n)\times_{\mathrm{Spin}(n-1)} V_\sigma\) over the boundary \(S^{n-1}\simeq \mathrm{Spin}(n)/\mathrm{Spin}(n-1)\) of \(H^n(\mathbb R)\), for \(1&lt;p&lt;\infty\).</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2022-08
issn 2331-8422
language eng
recordid cdi_proquest_journals_2706990290
source Publicly Available Content (ProQuest)
subjects Differential equations
Hyperbolic coordinates
Operators (mathematics)
Representations
title On Poisson transform for spinors
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T16%3A13%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=On%20Poisson%20transform%20for%20spinors&rft.jtitle=arXiv.org&rft.au=Salem%20Bensa%C3%AFd&rft.date=2022-08-31&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2706990290%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-proquest_journals_27069902903%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2706990290&rft_id=info:pmid/&rfr_iscdi=true