Loading…

Trajectory planning of 3-CRU parallel robot with linear kinematics equation

With advantages of linear kinematics equation, no singular pose, regular workspace, the best motion/force transmission performance, 3-CRU parallel robot is potential to perform better when rapid and repetitive grasping/handling in packaging and medicine industry. For this reason, this paper deals wi...

Full description

Saved in:
Bibliographic Details
Published in:Proceedings of the Institution of Mechanical Engineers. Part C, Journal of mechanical engineering science Journal of mechanical engineering science, 2022-09, Vol.236 (17), p.9589-9609
Main Authors: Zhang, Tie, Cao, Yachao, Ma, Guangcai
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c242t-2936313886ba0b6df0a6528498685f5a8f32dd8a16733fa91615963ae184bad43
cites cdi_FETCH-LOGICAL-c242t-2936313886ba0b6df0a6528498685f5a8f32dd8a16733fa91615963ae184bad43
container_end_page 9609
container_issue 17
container_start_page 9589
container_title Proceedings of the Institution of Mechanical Engineers. Part C, Journal of mechanical engineering science
container_volume 236
creator Zhang, Tie
Cao, Yachao
Ma, Guangcai
description With advantages of linear kinematics equation, no singular pose, regular workspace, the best motion/force transmission performance, 3-CRU parallel robot is potential to perform better when rapid and repetitive grasping/handling in packaging and medicine industry. For this reason, this paper deals with trajectory planning of the 3-CRU parallel robot. The trajectory planning method of the 3-CRU parallel robot is proposed for the first time whose advantage is the robot can arbitrarily increase the interpolation period in the Cartesian space without a twice interpolation in the joint space. This method simplifies the interpolation process of trajectory planning, reduces the occupation of computational resources, improves the computational efficiency of the controller, and benefits the real-time online control. For the problem of residual vibration when the robot stops, the input shaping technology is adopted and time delay compensation strategy is proposed, which improves the positioning accuracy of the moving platform and ensures fixed running time. This paper lays a theoretical and practical foundation for the application of the 3-CRU parallel robot in the future.
doi_str_mv 10.1177/09544062221103951
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2707178075</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sage_id>10.1177_09544062221103951</sage_id><sourcerecordid>2707178075</sourcerecordid><originalsourceid>FETCH-LOGICAL-c242t-2936313886ba0b6df0a6528498685f5a8f32dd8a16733fa91615963ae184bad43</originalsourceid><addsrcrecordid>eNp1UEtLw0AQXkTBWv0B3hY8p-7sO0cpvrAgSHsOk2RTU9Nsupsi_nu3VPAgzuUbmO8xfIRcA5sBGHPLciUl05xzACZyBSdkwpmEjOdWnJLJ4Z4dCOfkIsYNS8O1mpCXZcCNq0YfvujQYd-3_Zr6hops_raiAwbsOtfR4Es_0s92fKdd2zsM9CPBFse2itTt9mnx_SU5a7CL7uoHp2T1cL-cP2WL18fn-d0iq7jkY_pIaAHCWl0iK3XdMNSKW5lbbVWj0DaC17VF0EaIBnPQoHIt0IGVJdZSTMnN0XcIfrd3cSw2fh_6FFlwwwwYy4xKLDiyquBjDK4phtBuMXwVwIpDZ8WfzpJmdtREXLtf1_8F3xdZaeo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2707178075</pqid></control><display><type>article</type><title>Trajectory planning of 3-CRU parallel robot with linear kinematics equation</title><source>SAGE Journals</source><source>IMechE Titles Via Sage</source><creator>Zhang, Tie ; Cao, Yachao ; Ma, Guangcai</creator><creatorcontrib>Zhang, Tie ; Cao, Yachao ; Ma, Guangcai</creatorcontrib><description>With advantages of linear kinematics equation, no singular pose, regular workspace, the best motion/force transmission performance, 3-CRU parallel robot is potential to perform better when rapid and repetitive grasping/handling in packaging and medicine industry. For this reason, this paper deals with trajectory planning of the 3-CRU parallel robot. The trajectory planning method of the 3-CRU parallel robot is proposed for the first time whose advantage is the robot can arbitrarily increase the interpolation period in the Cartesian space without a twice interpolation in the joint space. This method simplifies the interpolation process of trajectory planning, reduces the occupation of computational resources, improves the computational efficiency of the controller, and benefits the real-time online control. For the problem of residual vibration when the robot stops, the input shaping technology is adopted and time delay compensation strategy is proposed, which improves the positioning accuracy of the moving platform and ensures fixed running time. This paper lays a theoretical and practical foundation for the application of the 3-CRU parallel robot in the future.</description><identifier>ISSN: 0954-4062</identifier><identifier>EISSN: 2041-2983</identifier><identifier>DOI: 10.1177/09544062221103951</identifier><language>eng</language><publisher>London, England: SAGE Publications</publisher><subject>Cartesian coordinates ; Input shaping ; Interpolation ; Kinematics ; Robot dynamics ; Robots ; Time lag ; Trajectory planning</subject><ispartof>Proceedings of the Institution of Mechanical Engineers. Part C, Journal of mechanical engineering science, 2022-09, Vol.236 (17), p.9589-9609</ispartof><rights>IMechE 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c242t-2936313886ba0b6df0a6528498685f5a8f32dd8a16733fa91615963ae184bad43</citedby><cites>FETCH-LOGICAL-c242t-2936313886ba0b6df0a6528498685f5a8f32dd8a16733fa91615963ae184bad43</cites><orcidid>0000-0001-7115-4056 ; 0000-0001-9716-3970</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://journals.sagepub.com/doi/pdf/10.1177/09544062221103951$$EPDF$$P50$$Gsage$$H</linktopdf><linktohtml>$$Uhttps://journals.sagepub.com/doi/10.1177/09544062221103951$$EHTML$$P50$$Gsage$$H</linktohtml><link.rule.ids>314,780,784,21913,27924,27925,45059,45447,79364</link.rule.ids></links><search><creatorcontrib>Zhang, Tie</creatorcontrib><creatorcontrib>Cao, Yachao</creatorcontrib><creatorcontrib>Ma, Guangcai</creatorcontrib><title>Trajectory planning of 3-CRU parallel robot with linear kinematics equation</title><title>Proceedings of the Institution of Mechanical Engineers. Part C, Journal of mechanical engineering science</title><description>With advantages of linear kinematics equation, no singular pose, regular workspace, the best motion/force transmission performance, 3-CRU parallel robot is potential to perform better when rapid and repetitive grasping/handling in packaging and medicine industry. For this reason, this paper deals with trajectory planning of the 3-CRU parallel robot. The trajectory planning method of the 3-CRU parallel robot is proposed for the first time whose advantage is the robot can arbitrarily increase the interpolation period in the Cartesian space without a twice interpolation in the joint space. This method simplifies the interpolation process of trajectory planning, reduces the occupation of computational resources, improves the computational efficiency of the controller, and benefits the real-time online control. For the problem of residual vibration when the robot stops, the input shaping technology is adopted and time delay compensation strategy is proposed, which improves the positioning accuracy of the moving platform and ensures fixed running time. This paper lays a theoretical and practical foundation for the application of the 3-CRU parallel robot in the future.</description><subject>Cartesian coordinates</subject><subject>Input shaping</subject><subject>Interpolation</subject><subject>Kinematics</subject><subject>Robot dynamics</subject><subject>Robots</subject><subject>Time lag</subject><subject>Trajectory planning</subject><issn>0954-4062</issn><issn>2041-2983</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp1UEtLw0AQXkTBWv0B3hY8p-7sO0cpvrAgSHsOk2RTU9Nsupsi_nu3VPAgzuUbmO8xfIRcA5sBGHPLciUl05xzACZyBSdkwpmEjOdWnJLJ4Z4dCOfkIsYNS8O1mpCXZcCNq0YfvujQYd-3_Zr6hops_raiAwbsOtfR4Es_0s92fKdd2zsM9CPBFse2itTt9mnx_SU5a7CL7uoHp2T1cL-cP2WL18fn-d0iq7jkY_pIaAHCWl0iK3XdMNSKW5lbbVWj0DaC17VF0EaIBnPQoHIt0IGVJdZSTMnN0XcIfrd3cSw2fh_6FFlwwwwYy4xKLDiyquBjDK4phtBuMXwVwIpDZ8WfzpJmdtREXLtf1_8F3xdZaeo</recordid><startdate>202209</startdate><enddate>202209</enddate><creator>Zhang, Tie</creator><creator>Cao, Yachao</creator><creator>Ma, Guangcai</creator><general>SAGE Publications</general><general>SAGE PUBLICATIONS, INC</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><orcidid>https://orcid.org/0000-0001-7115-4056</orcidid><orcidid>https://orcid.org/0000-0001-9716-3970</orcidid></search><sort><creationdate>202209</creationdate><title>Trajectory planning of 3-CRU parallel robot with linear kinematics equation</title><author>Zhang, Tie ; Cao, Yachao ; Ma, Guangcai</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c242t-2936313886ba0b6df0a6528498685f5a8f32dd8a16733fa91615963ae184bad43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Cartesian coordinates</topic><topic>Input shaping</topic><topic>Interpolation</topic><topic>Kinematics</topic><topic>Robot dynamics</topic><topic>Robots</topic><topic>Time lag</topic><topic>Trajectory planning</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Tie</creatorcontrib><creatorcontrib>Cao, Yachao</creatorcontrib><creatorcontrib>Ma, Guangcai</creatorcontrib><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><jtitle>Proceedings of the Institution of Mechanical Engineers. Part C, Journal of mechanical engineering science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Tie</au><au>Cao, Yachao</au><au>Ma, Guangcai</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Trajectory planning of 3-CRU parallel robot with linear kinematics equation</atitle><jtitle>Proceedings of the Institution of Mechanical Engineers. Part C, Journal of mechanical engineering science</jtitle><date>2022-09</date><risdate>2022</risdate><volume>236</volume><issue>17</issue><spage>9589</spage><epage>9609</epage><pages>9589-9609</pages><issn>0954-4062</issn><eissn>2041-2983</eissn><abstract>With advantages of linear kinematics equation, no singular pose, regular workspace, the best motion/force transmission performance, 3-CRU parallel robot is potential to perform better when rapid and repetitive grasping/handling in packaging and medicine industry. For this reason, this paper deals with trajectory planning of the 3-CRU parallel robot. The trajectory planning method of the 3-CRU parallel robot is proposed for the first time whose advantage is the robot can arbitrarily increase the interpolation period in the Cartesian space without a twice interpolation in the joint space. This method simplifies the interpolation process of trajectory planning, reduces the occupation of computational resources, improves the computational efficiency of the controller, and benefits the real-time online control. For the problem of residual vibration when the robot stops, the input shaping technology is adopted and time delay compensation strategy is proposed, which improves the positioning accuracy of the moving platform and ensures fixed running time. This paper lays a theoretical and practical foundation for the application of the 3-CRU parallel robot in the future.</abstract><cop>London, England</cop><pub>SAGE Publications</pub><doi>10.1177/09544062221103951</doi><tpages>21</tpages><orcidid>https://orcid.org/0000-0001-7115-4056</orcidid><orcidid>https://orcid.org/0000-0001-9716-3970</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0954-4062
ispartof Proceedings of the Institution of Mechanical Engineers. Part C, Journal of mechanical engineering science, 2022-09, Vol.236 (17), p.9589-9609
issn 0954-4062
2041-2983
language eng
recordid cdi_proquest_journals_2707178075
source SAGE Journals; IMechE Titles Via Sage
subjects Cartesian coordinates
Input shaping
Interpolation
Kinematics
Robot dynamics
Robots
Time lag
Trajectory planning
title Trajectory planning of 3-CRU parallel robot with linear kinematics equation
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T12%3A09%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Trajectory%20planning%20of%203-CRU%20parallel%20robot%20with%20linear%20kinematics%20equation&rft.jtitle=Proceedings%20of%20the%20Institution%20of%20Mechanical%20Engineers.%20Part%20C,%20Journal%20of%20mechanical%20engineering%20science&rft.au=Zhang,%20Tie&rft.date=2022-09&rft.volume=236&rft.issue=17&rft.spage=9589&rft.epage=9609&rft.pages=9589-9609&rft.issn=0954-4062&rft.eissn=2041-2983&rft_id=info:doi/10.1177/09544062221103951&rft_dat=%3Cproquest_cross%3E2707178075%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c242t-2936313886ba0b6df0a6528498685f5a8f32dd8a16733fa91615963ae184bad43%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2707178075&rft_id=info:pmid/&rft_sage_id=10.1177_09544062221103951&rfr_iscdi=true