Loading…
Trajectory planning of 3-CRU parallel robot with linear kinematics equation
With advantages of linear kinematics equation, no singular pose, regular workspace, the best motion/force transmission performance, 3-CRU parallel robot is potential to perform better when rapid and repetitive grasping/handling in packaging and medicine industry. For this reason, this paper deals wi...
Saved in:
Published in: | Proceedings of the Institution of Mechanical Engineers. Part C, Journal of mechanical engineering science Journal of mechanical engineering science, 2022-09, Vol.236 (17), p.9589-9609 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c242t-2936313886ba0b6df0a6528498685f5a8f32dd8a16733fa91615963ae184bad43 |
---|---|
cites | cdi_FETCH-LOGICAL-c242t-2936313886ba0b6df0a6528498685f5a8f32dd8a16733fa91615963ae184bad43 |
container_end_page | 9609 |
container_issue | 17 |
container_start_page | 9589 |
container_title | Proceedings of the Institution of Mechanical Engineers. Part C, Journal of mechanical engineering science |
container_volume | 236 |
creator | Zhang, Tie Cao, Yachao Ma, Guangcai |
description | With advantages of linear kinematics equation, no singular pose, regular workspace, the best motion/force transmission performance, 3-CRU parallel robot is potential to perform better when rapid and repetitive grasping/handling in packaging and medicine industry. For this reason, this paper deals with trajectory planning of the 3-CRU parallel robot. The trajectory planning method of the 3-CRU parallel robot is proposed for the first time whose advantage is the robot can arbitrarily increase the interpolation period in the Cartesian space without a twice interpolation in the joint space. This method simplifies the interpolation process of trajectory planning, reduces the occupation of computational resources, improves the computational efficiency of the controller, and benefits the real-time online control. For the problem of residual vibration when the robot stops, the input shaping technology is adopted and time delay compensation strategy is proposed, which improves the positioning accuracy of the moving platform and ensures fixed running time. This paper lays a theoretical and practical foundation for the application of the 3-CRU parallel robot in the future. |
doi_str_mv | 10.1177/09544062221103951 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2707178075</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sage_id>10.1177_09544062221103951</sage_id><sourcerecordid>2707178075</sourcerecordid><originalsourceid>FETCH-LOGICAL-c242t-2936313886ba0b6df0a6528498685f5a8f32dd8a16733fa91615963ae184bad43</originalsourceid><addsrcrecordid>eNp1UEtLw0AQXkTBWv0B3hY8p-7sO0cpvrAgSHsOk2RTU9Nsupsi_nu3VPAgzuUbmO8xfIRcA5sBGHPLciUl05xzACZyBSdkwpmEjOdWnJLJ4Z4dCOfkIsYNS8O1mpCXZcCNq0YfvujQYd-3_Zr6hops_raiAwbsOtfR4Es_0s92fKdd2zsM9CPBFse2itTt9mnx_SU5a7CL7uoHp2T1cL-cP2WL18fn-d0iq7jkY_pIaAHCWl0iK3XdMNSKW5lbbVWj0DaC17VF0EaIBnPQoHIt0IGVJdZSTMnN0XcIfrd3cSw2fh_6FFlwwwwYy4xKLDiyquBjDK4phtBuMXwVwIpDZ8WfzpJmdtREXLtf1_8F3xdZaeo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2707178075</pqid></control><display><type>article</type><title>Trajectory planning of 3-CRU parallel robot with linear kinematics equation</title><source>SAGE Journals</source><source>IMechE Titles Via Sage</source><creator>Zhang, Tie ; Cao, Yachao ; Ma, Guangcai</creator><creatorcontrib>Zhang, Tie ; Cao, Yachao ; Ma, Guangcai</creatorcontrib><description>With advantages of linear kinematics equation, no singular pose, regular workspace, the best motion/force transmission performance, 3-CRU parallel robot is potential to perform better when rapid and repetitive grasping/handling in packaging and medicine industry. For this reason, this paper deals with trajectory planning of the 3-CRU parallel robot. The trajectory planning method of the 3-CRU parallel robot is proposed for the first time whose advantage is the robot can arbitrarily increase the interpolation period in the Cartesian space without a twice interpolation in the joint space. This method simplifies the interpolation process of trajectory planning, reduces the occupation of computational resources, improves the computational efficiency of the controller, and benefits the real-time online control. For the problem of residual vibration when the robot stops, the input shaping technology is adopted and time delay compensation strategy is proposed, which improves the positioning accuracy of the moving platform and ensures fixed running time. This paper lays a theoretical and practical foundation for the application of the 3-CRU parallel robot in the future.</description><identifier>ISSN: 0954-4062</identifier><identifier>EISSN: 2041-2983</identifier><identifier>DOI: 10.1177/09544062221103951</identifier><language>eng</language><publisher>London, England: SAGE Publications</publisher><subject>Cartesian coordinates ; Input shaping ; Interpolation ; Kinematics ; Robot dynamics ; Robots ; Time lag ; Trajectory planning</subject><ispartof>Proceedings of the Institution of Mechanical Engineers. Part C, Journal of mechanical engineering science, 2022-09, Vol.236 (17), p.9589-9609</ispartof><rights>IMechE 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c242t-2936313886ba0b6df0a6528498685f5a8f32dd8a16733fa91615963ae184bad43</citedby><cites>FETCH-LOGICAL-c242t-2936313886ba0b6df0a6528498685f5a8f32dd8a16733fa91615963ae184bad43</cites><orcidid>0000-0001-7115-4056 ; 0000-0001-9716-3970</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://journals.sagepub.com/doi/pdf/10.1177/09544062221103951$$EPDF$$P50$$Gsage$$H</linktopdf><linktohtml>$$Uhttps://journals.sagepub.com/doi/10.1177/09544062221103951$$EHTML$$P50$$Gsage$$H</linktohtml><link.rule.ids>314,780,784,21913,27924,27925,45059,45447,79364</link.rule.ids></links><search><creatorcontrib>Zhang, Tie</creatorcontrib><creatorcontrib>Cao, Yachao</creatorcontrib><creatorcontrib>Ma, Guangcai</creatorcontrib><title>Trajectory planning of 3-CRU parallel robot with linear kinematics equation</title><title>Proceedings of the Institution of Mechanical Engineers. Part C, Journal of mechanical engineering science</title><description>With advantages of linear kinematics equation, no singular pose, regular workspace, the best motion/force transmission performance, 3-CRU parallel robot is potential to perform better when rapid and repetitive grasping/handling in packaging and medicine industry. For this reason, this paper deals with trajectory planning of the 3-CRU parallel robot. The trajectory planning method of the 3-CRU parallel robot is proposed for the first time whose advantage is the robot can arbitrarily increase the interpolation period in the Cartesian space without a twice interpolation in the joint space. This method simplifies the interpolation process of trajectory planning, reduces the occupation of computational resources, improves the computational efficiency of the controller, and benefits the real-time online control. For the problem of residual vibration when the robot stops, the input shaping technology is adopted and time delay compensation strategy is proposed, which improves the positioning accuracy of the moving platform and ensures fixed running time. This paper lays a theoretical and practical foundation for the application of the 3-CRU parallel robot in the future.</description><subject>Cartesian coordinates</subject><subject>Input shaping</subject><subject>Interpolation</subject><subject>Kinematics</subject><subject>Robot dynamics</subject><subject>Robots</subject><subject>Time lag</subject><subject>Trajectory planning</subject><issn>0954-4062</issn><issn>2041-2983</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp1UEtLw0AQXkTBWv0B3hY8p-7sO0cpvrAgSHsOk2RTU9Nsupsi_nu3VPAgzuUbmO8xfIRcA5sBGHPLciUl05xzACZyBSdkwpmEjOdWnJLJ4Z4dCOfkIsYNS8O1mpCXZcCNq0YfvujQYd-3_Zr6hops_raiAwbsOtfR4Es_0s92fKdd2zsM9CPBFse2itTt9mnx_SU5a7CL7uoHp2T1cL-cP2WL18fn-d0iq7jkY_pIaAHCWl0iK3XdMNSKW5lbbVWj0DaC17VF0EaIBnPQoHIt0IGVJdZSTMnN0XcIfrd3cSw2fh_6FFlwwwwYy4xKLDiyquBjDK4phtBuMXwVwIpDZ8WfzpJmdtREXLtf1_8F3xdZaeo</recordid><startdate>202209</startdate><enddate>202209</enddate><creator>Zhang, Tie</creator><creator>Cao, Yachao</creator><creator>Ma, Guangcai</creator><general>SAGE Publications</general><general>SAGE PUBLICATIONS, INC</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><orcidid>https://orcid.org/0000-0001-7115-4056</orcidid><orcidid>https://orcid.org/0000-0001-9716-3970</orcidid></search><sort><creationdate>202209</creationdate><title>Trajectory planning of 3-CRU parallel robot with linear kinematics equation</title><author>Zhang, Tie ; Cao, Yachao ; Ma, Guangcai</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c242t-2936313886ba0b6df0a6528498685f5a8f32dd8a16733fa91615963ae184bad43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Cartesian coordinates</topic><topic>Input shaping</topic><topic>Interpolation</topic><topic>Kinematics</topic><topic>Robot dynamics</topic><topic>Robots</topic><topic>Time lag</topic><topic>Trajectory planning</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Tie</creatorcontrib><creatorcontrib>Cao, Yachao</creatorcontrib><creatorcontrib>Ma, Guangcai</creatorcontrib><collection>CrossRef</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><jtitle>Proceedings of the Institution of Mechanical Engineers. Part C, Journal of mechanical engineering science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Tie</au><au>Cao, Yachao</au><au>Ma, Guangcai</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Trajectory planning of 3-CRU parallel robot with linear kinematics equation</atitle><jtitle>Proceedings of the Institution of Mechanical Engineers. Part C, Journal of mechanical engineering science</jtitle><date>2022-09</date><risdate>2022</risdate><volume>236</volume><issue>17</issue><spage>9589</spage><epage>9609</epage><pages>9589-9609</pages><issn>0954-4062</issn><eissn>2041-2983</eissn><abstract>With advantages of linear kinematics equation, no singular pose, regular workspace, the best motion/force transmission performance, 3-CRU parallel robot is potential to perform better when rapid and repetitive grasping/handling in packaging and medicine industry. For this reason, this paper deals with trajectory planning of the 3-CRU parallel robot. The trajectory planning method of the 3-CRU parallel robot is proposed for the first time whose advantage is the robot can arbitrarily increase the interpolation period in the Cartesian space without a twice interpolation in the joint space. This method simplifies the interpolation process of trajectory planning, reduces the occupation of computational resources, improves the computational efficiency of the controller, and benefits the real-time online control. For the problem of residual vibration when the robot stops, the input shaping technology is adopted and time delay compensation strategy is proposed, which improves the positioning accuracy of the moving platform and ensures fixed running time. This paper lays a theoretical and practical foundation for the application of the 3-CRU parallel robot in the future.</abstract><cop>London, England</cop><pub>SAGE Publications</pub><doi>10.1177/09544062221103951</doi><tpages>21</tpages><orcidid>https://orcid.org/0000-0001-7115-4056</orcidid><orcidid>https://orcid.org/0000-0001-9716-3970</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0954-4062 |
ispartof | Proceedings of the Institution of Mechanical Engineers. Part C, Journal of mechanical engineering science, 2022-09, Vol.236 (17), p.9589-9609 |
issn | 0954-4062 2041-2983 |
language | eng |
recordid | cdi_proquest_journals_2707178075 |
source | SAGE Journals; IMechE Titles Via Sage |
subjects | Cartesian coordinates Input shaping Interpolation Kinematics Robot dynamics Robots Time lag Trajectory planning |
title | Trajectory planning of 3-CRU parallel robot with linear kinematics equation |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T12%3A09%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Trajectory%20planning%20of%203-CRU%20parallel%20robot%20with%20linear%20kinematics%20equation&rft.jtitle=Proceedings%20of%20the%20Institution%20of%20Mechanical%20Engineers.%20Part%20C,%20Journal%20of%20mechanical%20engineering%20science&rft.au=Zhang,%20Tie&rft.date=2022-09&rft.volume=236&rft.issue=17&rft.spage=9589&rft.epage=9609&rft.pages=9589-9609&rft.issn=0954-4062&rft.eissn=2041-2983&rft_id=info:doi/10.1177/09544062221103951&rft_dat=%3Cproquest_cross%3E2707178075%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c242t-2936313886ba0b6df0a6528498685f5a8f32dd8a16733fa91615963ae184bad43%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2707178075&rft_id=info:pmid/&rft_sage_id=10.1177_09544062221103951&rfr_iscdi=true |