Loading…

Flexible Conductive Nanocomposites for Electrochemical Devices Based on Chlorinated Natural Rubber/Nickel Oxide Nanoparticles

A study on structural, thermal, temperature-dependent electrical properties such as AC conductivity and dielectric properties of flexible conductive chlorinated natural rubber (Cl-NR) were carried out with various contents of nickel oxide (NiO) nanoparticles. The role of fillers on DC conductivity o...

Full description

Saved in:
Bibliographic Details
Published in:Journal of inorganic and organometallic polymers and materials 2022-08, Vol.32 (8), p.2827-2842
Main Authors: Parvathi, K., Bahuleyan, B. K., Ramesan, M. T.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:A study on structural, thermal, temperature-dependent electrical properties such as AC conductivity and dielectric properties of flexible conductive chlorinated natural rubber (Cl-NR) were carried out with various contents of nickel oxide (NiO) nanoparticles. The role of fillers on DC conductivity of the composites was correlated with different theoretical models. The FT-IR spectra showed the characteristic absorption band for nano-NiO in the rubber indicating the effective incorporation of nanoparticles in Cl-NR. Optical bandgap energy was observed minimum for 5 phr loaded composite. TGA results showed that the thermal stability increased with NiO content in the polymer matrix. The dielectric properties and AC electrical conductivity increased significantly with the temperatures and also with the addition of nanoparticles up to 5 phr loading. The activation energy of the electrical conductivity decreases with an increase in temperature for all the systems. The higher value of dielectric permittivity explained the electrode polarisations at the low-frequency region. The skewed semi-circular arc in the Cole–Cole plot observed for all the samples explained the semiconducting behaviour of the nanocomposites. Space charge polarisation and relaxation dynamics of Cl-NR composites were explained based on modulus spectra. The McCullough model was found to be the most promising one to explain the DC conductivity of the system which emphasizes the importance of interfacial interaction at the boundary of filler and the rubber chain for the network formation. According to the results of this study, these samples can be used in highly durable flexible electronic devices such as conductive sensors, actuators and super-capacitors.
ISSN:1574-1443
1574-1451
DOI:10.1007/s10904-022-02307-y