Loading…
Euler simulation of interacting particle systems and McKean-Vlasov SDEs with fully superlinear growth drifts in space and interaction
We consider in this work the convergence of a split-step Euler type scheme (SSM) for the numerical simulation of interacting particle Stochastic Differential Equation (SDE) systems and McKean-Vlasov Stochastic Differential Equations (MV-SDEs) with full super-linear growth in the spatial and the inte...
Saved in:
Published in: | arXiv.org 2023-03 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | |
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Chen, Xingyuan Goncalo dos Reis |
description | We consider in this work the convergence of a split-step Euler type scheme (SSM) for the numerical simulation of interacting particle Stochastic Differential Equation (SDE) systems and McKean-Vlasov Stochastic Differential Equations (MV-SDEs) with full super-linear growth in the spatial and the interaction component in the drift, and non-constant Lipschitz diffusion coefficient. The super-linear growth in the interaction (or measure) component stems from convolution operations with super-linear growth functions allowing in particular application to the granular media equation with multi-well confining potentials. From a methodological point of view, we avoid altogether functional inequality arguments (as we allow for non-constant non-bounded diffusion maps). The scheme attains, in stepsize, a near-optimal classical (path-space) root mean-square error rate of \(1/2-\varepsilon\) for \(\varepsilon>0\) and an optimal rate \(1/2\) in the non-path-space mean-square error metric. Numerical examples illustrate all findings. In particular, the testing raises doubts if taming is a suitable methodology for this type of problem (with convolution terms and non-constant diffusion coefficients). |
format | article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2707727391</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2707727391</sourcerecordid><originalsourceid>FETCH-proquest_journals_27077273913</originalsourceid><addsrcrecordid>eNqNjcFqAjEURUNBqFT_4UHXA2NSG123U4TiSnE7PMY3NkMmmb6XKH5A_7uDSNdd3cW5nPOgptqYRbF60fpRzUW6siz1q9XLpZmqnyp7YhDXZ4_JxQCxBRcSMTbJhRMMyMk1nkCukqgXwHCEbfNJGIqDR4ln2L1XAheXvqDN3l9B8kDsXSBkOHG8jODIrk0yikEGbOgm-avEMFOTFr3Q_L5P6vmj2r9tioHjdyZJdRczhxHV2pbWamvWC_O_1y9fb1Nn</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2707727391</pqid></control><display><type>article</type><title>Euler simulation of interacting particle systems and McKean-Vlasov SDEs with fully superlinear growth drifts in space and interaction</title><source>Publicly Available Content Database</source><creator>Chen, Xingyuan ; Goncalo dos Reis</creator><creatorcontrib>Chen, Xingyuan ; Goncalo dos Reis</creatorcontrib><description>We consider in this work the convergence of a split-step Euler type scheme (SSM) for the numerical simulation of interacting particle Stochastic Differential Equation (SDE) systems and McKean-Vlasov Stochastic Differential Equations (MV-SDEs) with full super-linear growth in the spatial and the interaction component in the drift, and non-constant Lipschitz diffusion coefficient. The super-linear growth in the interaction (or measure) component stems from convolution operations with super-linear growth functions allowing in particular application to the granular media equation with multi-well confining potentials. From a methodological point of view, we avoid altogether functional inequality arguments (as we allow for non-constant non-bounded diffusion maps). The scheme attains, in stepsize, a near-optimal classical (path-space) root mean-square error rate of \(1/2-\varepsilon\) for \(\varepsilon>0\) and an optimal rate \(1/2\) in the non-path-space mean-square error metric. Numerical examples illustrate all findings. In particular, the testing raises doubts if taming is a suitable methodology for this type of problem (with convolution terms and non-constant diffusion coefficients).</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Convolution ; Differential equations ; Diffusion ; Diffusion coefficient ; Granular materials ; Granular media</subject><ispartof>arXiv.org, 2023-03</ispartof><rights>2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2707727391?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>776,780,25731,36989,44566</link.rule.ids></links><search><creatorcontrib>Chen, Xingyuan</creatorcontrib><creatorcontrib>Goncalo dos Reis</creatorcontrib><title>Euler simulation of interacting particle systems and McKean-Vlasov SDEs with fully superlinear growth drifts in space and interaction</title><title>arXiv.org</title><description>We consider in this work the convergence of a split-step Euler type scheme (SSM) for the numerical simulation of interacting particle Stochastic Differential Equation (SDE) systems and McKean-Vlasov Stochastic Differential Equations (MV-SDEs) with full super-linear growth in the spatial and the interaction component in the drift, and non-constant Lipschitz diffusion coefficient. The super-linear growth in the interaction (or measure) component stems from convolution operations with super-linear growth functions allowing in particular application to the granular media equation with multi-well confining potentials. From a methodological point of view, we avoid altogether functional inequality arguments (as we allow for non-constant non-bounded diffusion maps). The scheme attains, in stepsize, a near-optimal classical (path-space) root mean-square error rate of \(1/2-\varepsilon\) for \(\varepsilon>0\) and an optimal rate \(1/2\) in the non-path-space mean-square error metric. Numerical examples illustrate all findings. In particular, the testing raises doubts if taming is a suitable methodology for this type of problem (with convolution terms and non-constant diffusion coefficients).</description><subject>Convolution</subject><subject>Differential equations</subject><subject>Diffusion</subject><subject>Diffusion coefficient</subject><subject>Granular materials</subject><subject>Granular media</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNqNjcFqAjEURUNBqFT_4UHXA2NSG123U4TiSnE7PMY3NkMmmb6XKH5A_7uDSNdd3cW5nPOgptqYRbF60fpRzUW6siz1q9XLpZmqnyp7YhDXZ4_JxQCxBRcSMTbJhRMMyMk1nkCukqgXwHCEbfNJGIqDR4ln2L1XAheXvqDN3l9B8kDsXSBkOHG8jODIrk0yikEGbOgm-avEMFOTFr3Q_L5P6vmj2r9tioHjdyZJdRczhxHV2pbWamvWC_O_1y9fb1Nn</recordid><startdate>20230327</startdate><enddate>20230327</enddate><creator>Chen, Xingyuan</creator><creator>Goncalo dos Reis</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20230327</creationdate><title>Euler simulation of interacting particle systems and McKean-Vlasov SDEs with fully superlinear growth drifts in space and interaction</title><author>Chen, Xingyuan ; Goncalo dos Reis</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_27077273913</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Convolution</topic><topic>Differential equations</topic><topic>Diffusion</topic><topic>Diffusion coefficient</topic><topic>Granular materials</topic><topic>Granular media</topic><toplevel>online_resources</toplevel><creatorcontrib>Chen, Xingyuan</creatorcontrib><creatorcontrib>Goncalo dos Reis</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chen, Xingyuan</au><au>Goncalo dos Reis</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Euler simulation of interacting particle systems and McKean-Vlasov SDEs with fully superlinear growth drifts in space and interaction</atitle><jtitle>arXiv.org</jtitle><date>2023-03-27</date><risdate>2023</risdate><eissn>2331-8422</eissn><abstract>We consider in this work the convergence of a split-step Euler type scheme (SSM) for the numerical simulation of interacting particle Stochastic Differential Equation (SDE) systems and McKean-Vlasov Stochastic Differential Equations (MV-SDEs) with full super-linear growth in the spatial and the interaction component in the drift, and non-constant Lipschitz diffusion coefficient. The super-linear growth in the interaction (or measure) component stems from convolution operations with super-linear growth functions allowing in particular application to the granular media equation with multi-well confining potentials. From a methodological point of view, we avoid altogether functional inequality arguments (as we allow for non-constant non-bounded diffusion maps). The scheme attains, in stepsize, a near-optimal classical (path-space) root mean-square error rate of \(1/2-\varepsilon\) for \(\varepsilon>0\) and an optimal rate \(1/2\) in the non-path-space mean-square error metric. Numerical examples illustrate all findings. In particular, the testing raises doubts if taming is a suitable methodology for this type of problem (with convolution terms and non-constant diffusion coefficients).</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2023-03 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2707727391 |
source | Publicly Available Content Database |
subjects | Convolution Differential equations Diffusion Diffusion coefficient Granular materials Granular media |
title | Euler simulation of interacting particle systems and McKean-Vlasov SDEs with fully superlinear growth drifts in space and interaction |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T21%3A47%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Euler%20simulation%20of%20interacting%20particle%20systems%20and%20McKean-Vlasov%20SDEs%20with%20fully%20superlinear%20growth%20drifts%20in%20space%20and%20interaction&rft.jtitle=arXiv.org&rft.au=Chen,%20Xingyuan&rft.date=2023-03-27&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2707727391%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-proquest_journals_27077273913%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2707727391&rft_id=info:pmid/&rfr_iscdi=true |