Loading…

BOOTSTRAP INFERENCE FOR MULTIPLE CHANGE-POINTS IN TIME SERIES

In this paper, we propose two bootstrap procedures, namely parametric and block bootstrap, to approximate the finite sample distribution of change-point estimators for piecewise stationary time series. The bootstrap procedures are then used to develop a generalized likelihood ratio scan method (GLRS...

Full description

Saved in:
Bibliographic Details
Published in:Econometric theory 2022-08, Vol.38 (4), p.752-792
Main Authors: Ng, Wai Leong, Pan, Shenyi, Yau, Chun Yip
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c305t-69ee91c4a9dc19dce25cc215b66e53c6fd0cd09b90a5ef7cc99da2879da7a4683
cites cdi_FETCH-LOGICAL-c305t-69ee91c4a9dc19dce25cc215b66e53c6fd0cd09b90a5ef7cc99da2879da7a4683
container_end_page 792
container_issue 4
container_start_page 752
container_title Econometric theory
container_volume 38
creator Ng, Wai Leong
Pan, Shenyi
Yau, Chun Yip
description In this paper, we propose two bootstrap procedures, namely parametric and block bootstrap, to approximate the finite sample distribution of change-point estimators for piecewise stationary time series. The bootstrap procedures are then used to develop a generalized likelihood ratio scan method (GLRSM) for multiple change-point inference in piecewise stationary time series, which estimates the number and locations of change-points and provides a confidence interval for each change-point. The computational complexity of using GLRSM for multiple change-point detection is as low as $O(n(\log n)^{3})$ for a series of length n. Extensive simulation studies are provided to demonstrate the effectiveness of the proposed methodology under different scenarios. Applications to financial time series are also illustrated.
doi_str_mv 10.1017/S0266466621000293
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2707847733</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_1017_S0266466621000293</cupid><sourcerecordid>2707847733</sourcerecordid><originalsourceid>FETCH-LOGICAL-c305t-69ee91c4a9dc19dce25cc215b66e53c6fd0cd09b90a5ef7cc99da2879da7a4683</originalsourceid><addsrcrecordid>eNp1kE9Pg0AQxTdGE2v1A3gj8YzO_mG3e_BQydKSUCBAz2RZFtPG2rq0B7-9kDbxYDzMzOH93pvkIfSI4RkDFi8lEM4Z55xgACCSXqEJZlz6jHK4RpNR9kf9Ft31_RYAEynoBL2-ZVlVVsU89-I0UoVKQ-VFWeGt1kkV54nywuU8XSg_z-K0KgfIq-KV8kpVxKq8Rzed_ujtw-VO0TpSVbj0k2wRh_PENxSCo8-ltRIbpmVr8DCWBMYQHDSc24Aa3rVgWpCNBB3YThgjZavJTAxbaMZndIqezrkHt_862f5Yb_cn9zm8rIkAMWNCUDpQ-EwZt-97Z7v64DY77b5rDPXYUv2npcFDLx69a9ymfbe_0f-7fgBYx2L7</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2707847733</pqid></control><display><type>article</type><title>BOOTSTRAP INFERENCE FOR MULTIPLE CHANGE-POINTS IN TIME SERIES</title><source>International Bibliography of the Social Sciences (IBSS)</source><source>ABI/INFORM Global</source><source>Cambridge University Press</source><creator>Ng, Wai Leong ; Pan, Shenyi ; Yau, Chun Yip</creator><creatorcontrib>Ng, Wai Leong ; Pan, Shenyi ; Yau, Chun Yip</creatorcontrib><description>In this paper, we propose two bootstrap procedures, namely parametric and block bootstrap, to approximate the finite sample distribution of change-point estimators for piecewise stationary time series. The bootstrap procedures are then used to develop a generalized likelihood ratio scan method (GLRSM) for multiple change-point inference in piecewise stationary time series, which estimates the number and locations of change-points and provides a confidence interval for each change-point. The computational complexity of using GLRSM for multiple change-point detection is as low as $O(n(\log n)^{3})$ for a series of length n. Extensive simulation studies are provided to demonstrate the effectiveness of the proposed methodology under different scenarios. Applications to financial time series are also illustrated.</description><identifier>ISSN: 0266-4666</identifier><identifier>EISSN: 1469-4360</identifier><identifier>DOI: 10.1017/S0266466621000293</identifier><language>eng</language><publisher>New York, USA: Cambridge University Press</publisher><subject>Approximation ; Changes ; Econometrics ; Economic theory ; Genetic algorithms ; Random variables ; Simulation ; Time series</subject><ispartof>Econometric theory, 2022-08, Vol.38 (4), p.752-792</ispartof><rights>The Author(s), 2021. Published by Cambridge University Press</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c305t-69ee91c4a9dc19dce25cc215b66e53c6fd0cd09b90a5ef7cc99da2879da7a4683</citedby><cites>FETCH-LOGICAL-c305t-69ee91c4a9dc19dce25cc215b66e53c6fd0cd09b90a5ef7cc99da2879da7a4683</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2707847733/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2707847733?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,780,784,11688,12847,27924,27925,33223,36060,44363,72960,74895</link.rule.ids></links><search><creatorcontrib>Ng, Wai Leong</creatorcontrib><creatorcontrib>Pan, Shenyi</creatorcontrib><creatorcontrib>Yau, Chun Yip</creatorcontrib><title>BOOTSTRAP INFERENCE FOR MULTIPLE CHANGE-POINTS IN TIME SERIES</title><title>Econometric theory</title><addtitle>Econom. Theory</addtitle><description>In this paper, we propose two bootstrap procedures, namely parametric and block bootstrap, to approximate the finite sample distribution of change-point estimators for piecewise stationary time series. The bootstrap procedures are then used to develop a generalized likelihood ratio scan method (GLRSM) for multiple change-point inference in piecewise stationary time series, which estimates the number and locations of change-points and provides a confidence interval for each change-point. The computational complexity of using GLRSM for multiple change-point detection is as low as $O(n(\log n)^{3})$ for a series of length n. Extensive simulation studies are provided to demonstrate the effectiveness of the proposed methodology under different scenarios. Applications to financial time series are also illustrated.</description><subject>Approximation</subject><subject>Changes</subject><subject>Econometrics</subject><subject>Economic theory</subject><subject>Genetic algorithms</subject><subject>Random variables</subject><subject>Simulation</subject><subject>Time series</subject><issn>0266-4666</issn><issn>1469-4360</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>8BJ</sourceid><sourceid>M0C</sourceid><recordid>eNp1kE9Pg0AQxTdGE2v1A3gj8YzO_mG3e_BQydKSUCBAz2RZFtPG2rq0B7-9kDbxYDzMzOH93pvkIfSI4RkDFi8lEM4Z55xgACCSXqEJZlz6jHK4RpNR9kf9Ft31_RYAEynoBL2-ZVlVVsU89-I0UoVKQ-VFWeGt1kkV54nywuU8XSg_z-K0KgfIq-KV8kpVxKq8Rzed_ujtw-VO0TpSVbj0k2wRh_PENxSCo8-ltRIbpmVr8DCWBMYQHDSc24Aa3rVgWpCNBB3YThgjZavJTAxbaMZndIqezrkHt_862f5Yb_cn9zm8rIkAMWNCUDpQ-EwZt-97Z7v64DY77b5rDPXYUv2npcFDLx69a9ymfbe_0f-7fgBYx2L7</recordid><startdate>20220801</startdate><enddate>20220801</enddate><creator>Ng, Wai Leong</creator><creator>Pan, Shenyi</creator><creator>Yau, Chun Yip</creator><general>Cambridge University Press</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>8BJ</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FQK</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>JBE</scope><scope>K60</scope><scope>K6~</scope><scope>L.-</scope><scope>M0C</scope><scope>M2O</scope><scope>MBDVC</scope><scope>PADUT</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYYUZ</scope><scope>Q9U</scope></search><sort><creationdate>20220801</creationdate><title>BOOTSTRAP INFERENCE FOR MULTIPLE CHANGE-POINTS IN TIME SERIES</title><author>Ng, Wai Leong ; Pan, Shenyi ; Yau, Chun Yip</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c305t-69ee91c4a9dc19dce25cc215b66e53c6fd0cd09b90a5ef7cc99da2879da7a4683</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Approximation</topic><topic>Changes</topic><topic>Econometrics</topic><topic>Economic theory</topic><topic>Genetic algorithms</topic><topic>Random variables</topic><topic>Simulation</topic><topic>Time series</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ng, Wai Leong</creatorcontrib><creatorcontrib>Pan, Shenyi</creatorcontrib><creatorcontrib>Yau, Chun Yip</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection</collection><collection>International Bibliography of the Social Sciences (IBSS)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Business Premium Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>International Bibliography of the Social Sciences</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>International Bibliography of the Social Sciences</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ABI/INFORM Global</collection><collection>ProQuest research library</collection><collection>Research Library (Corporate)</collection><collection>Research Library China</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ABI/INFORM Collection China</collection><collection>ProQuest Central Basic</collection><jtitle>Econometric theory</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ng, Wai Leong</au><au>Pan, Shenyi</au><au>Yau, Chun Yip</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>BOOTSTRAP INFERENCE FOR MULTIPLE CHANGE-POINTS IN TIME SERIES</atitle><jtitle>Econometric theory</jtitle><addtitle>Econom. Theory</addtitle><date>2022-08-01</date><risdate>2022</risdate><volume>38</volume><issue>4</issue><spage>752</spage><epage>792</epage><pages>752-792</pages><issn>0266-4666</issn><eissn>1469-4360</eissn><abstract>In this paper, we propose two bootstrap procedures, namely parametric and block bootstrap, to approximate the finite sample distribution of change-point estimators for piecewise stationary time series. The bootstrap procedures are then used to develop a generalized likelihood ratio scan method (GLRSM) for multiple change-point inference in piecewise stationary time series, which estimates the number and locations of change-points and provides a confidence interval for each change-point. The computational complexity of using GLRSM for multiple change-point detection is as low as $O(n(\log n)^{3})$ for a series of length n. Extensive simulation studies are provided to demonstrate the effectiveness of the proposed methodology under different scenarios. Applications to financial time series are also illustrated.</abstract><cop>New York, USA</cop><pub>Cambridge University Press</pub><doi>10.1017/S0266466621000293</doi><tpages>41</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0266-4666
ispartof Econometric theory, 2022-08, Vol.38 (4), p.752-792
issn 0266-4666
1469-4360
language eng
recordid cdi_proquest_journals_2707847733
source International Bibliography of the Social Sciences (IBSS); ABI/INFORM Global; Cambridge University Press
subjects Approximation
Changes
Econometrics
Economic theory
Genetic algorithms
Random variables
Simulation
Time series
title BOOTSTRAP INFERENCE FOR MULTIPLE CHANGE-POINTS IN TIME SERIES
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T13%3A30%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=BOOTSTRAP%20INFERENCE%20FOR%20MULTIPLE%20CHANGE-POINTS%20IN%20TIME%20SERIES&rft.jtitle=Econometric%20theory&rft.au=Ng,%20Wai%20Leong&rft.date=2022-08-01&rft.volume=38&rft.issue=4&rft.spage=752&rft.epage=792&rft.pages=752-792&rft.issn=0266-4666&rft.eissn=1469-4360&rft_id=info:doi/10.1017/S0266466621000293&rft_dat=%3Cproquest_cross%3E2707847733%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c305t-69ee91c4a9dc19dce25cc215b66e53c6fd0cd09b90a5ef7cc99da2879da7a4683%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2707847733&rft_id=info:pmid/&rft_cupid=10_1017_S0266466621000293&rfr_iscdi=true