Loading…
A methodology for creating thermostabilized mutants of G‐protein coupled receptors by combining statistical thermodynamics and evolutionary molecular engineering
We constructed a methodology for thermostabilizing a G‐protein coupled receptor (GPCR) in the inactive state whose wild‐type (WT) structure is unknown solely by multiple amino‐acid mutations without the ligand binding. It is a combination of our recently developed theory based on statistical thermod...
Saved in:
Published in: | Protein science 2022-09, Vol.31 (9), p.n/a |
---|---|
Main Authors: | , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c3444-ae87bd3b7f05d2fa604282ca7604feb49a55b490c73128d115cdb6929cf40b783 |
---|---|
cites | cdi_FETCH-LOGICAL-c3444-ae87bd3b7f05d2fa604282ca7604feb49a55b490c73128d115cdb6929cf40b783 |
container_end_page | n/a |
container_issue | 9 |
container_start_page | |
container_title | Protein science |
container_volume | 31 |
creator | Sugaya, Kanna Yasuda, Satoshi Sato, Shingo Sisi, Chen Yamamoto, Taisei Umeno, Daisuke Matsuura, Tomoaki Hayashi, Tomohiko Ogasawara, Satoshi Kinoshita, Masahiro Murata, Takeshi |
description | We constructed a methodology for thermostabilizing a G‐protein coupled receptor (GPCR) in the inactive state whose wild‐type (WT) structure is unknown solely by multiple amino‐acid mutations without the ligand binding. It is a combination of our recently developed theory based on statistical thermodynamics and site‐directed saturation mutagenesis, a method often employed in evolutionary molecular engineering. First, the WT structure is predicted using the homology modeling. Second, a key residue is determined by our statistical‐thermodynamics theory using suitably modeled mutant structures. Many of 19 different single mutations for the key residue are expected to produce significantly higher stabilization. Third, we undertake to mutate not only the key residue but also a few more residues whose side chains are close to the side chain of the key residue. The whole mutational space is then efficiently explored by introducing site‐directed saturation mutations, and a gene (mutant) library is constructed using the small‐intelligent and fully automatic single‐tube recombination methods. Each mutant is expressed in Escherichia coli cells, and highly stabilized mutants are sorted out using a fluorescence‐screening technique. The methodology was illustrated for the serotonin 2A receptor, 5‐HT2AR, for stabilizing its inactive state. We could identify a double mutant whose apparent midpoint temperature of thermal denaturation is higher than that of a thermostabilized double mutant previously reported by ~8.9°C and that of the WT by over 15°C. Moreover, it exhibits higher binding affinity for spiperone, an antagonist which was previously proved to stabilize 5‐HT2AR in the inactive state. |
doi_str_mv | 10.1002/pro.4404 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2707855666</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2707855666</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3444-ae87bd3b7f05d2fa604282ca7604feb49a55b490c73128d115cdb6929cf40b783</originalsourceid><addsrcrecordid>eNp1kc1KxDAQgIMouP6AjxDw4qVr0qZpe1wWXQVhRRS8lTSdrpE0WZNUqScfwXfwzXwSs65XL5OZ5OObCYPQCSVTSkh6vnZ2yhhhO2hCGa-SsuKPu2hCKk6TMuPlPjrw_pkQwmiaTdDXDPcQnmxrtV2NuLMOSwciKLPC4Qlcb30QjdLqHVrcD0GY4LHt8OL74zO2CqAMlnZY6_jsQMI6WOdxM8bLvlFmo4mCoHxQUug_ZTsa0SvpsTAthlerh6CsEW7EvdUgBy0cBrNSBsBFwxHa64T2cPx3HqKHy4v7-VVys1xcz2c3icwYY4mAsmjarCk6krdpJzhhaZlKUcSkg4ZVIs9jJLLIaFq2lOaybXiVVrJjpCnK7BCdbr3xYy8D-FA_28GZ2LJOC1KUec45j9TZlpLOeu-gq9dO9XH4mpJ6s4JY23qzgogmW_RNaRj_5erbu-Uv_wPT545O</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2707855666</pqid></control><display><type>article</type><title>A methodology for creating thermostabilized mutants of G‐protein coupled receptors by combining statistical thermodynamics and evolutionary molecular engineering</title><source>Wiley</source><source>PubMed Central</source><creator>Sugaya, Kanna ; Yasuda, Satoshi ; Sato, Shingo ; Sisi, Chen ; Yamamoto, Taisei ; Umeno, Daisuke ; Matsuura, Tomoaki ; Hayashi, Tomohiko ; Ogasawara, Satoshi ; Kinoshita, Masahiro ; Murata, Takeshi</creator><creatorcontrib>Sugaya, Kanna ; Yasuda, Satoshi ; Sato, Shingo ; Sisi, Chen ; Yamamoto, Taisei ; Umeno, Daisuke ; Matsuura, Tomoaki ; Hayashi, Tomohiko ; Ogasawara, Satoshi ; Kinoshita, Masahiro ; Murata, Takeshi</creatorcontrib><description>We constructed a methodology for thermostabilizing a G‐protein coupled receptor (GPCR) in the inactive state whose wild‐type (WT) structure is unknown solely by multiple amino‐acid mutations without the ligand binding. It is a combination of our recently developed theory based on statistical thermodynamics and site‐directed saturation mutagenesis, a method often employed in evolutionary molecular engineering. First, the WT structure is predicted using the homology modeling. Second, a key residue is determined by our statistical‐thermodynamics theory using suitably modeled mutant structures. Many of 19 different single mutations for the key residue are expected to produce significantly higher stabilization. Third, we undertake to mutate not only the key residue but also a few more residues whose side chains are close to the side chain of the key residue. The whole mutational space is then efficiently explored by introducing site‐directed saturation mutations, and a gene (mutant) library is constructed using the small‐intelligent and fully automatic single‐tube recombination methods. Each mutant is expressed in Escherichia coli cells, and highly stabilized mutants are sorted out using a fluorescence‐screening technique. The methodology was illustrated for the serotonin 2A receptor, 5‐HT2AR, for stabilizing its inactive state. We could identify a double mutant whose apparent midpoint temperature of thermal denaturation is higher than that of a thermostabilized double mutant previously reported by ~8.9°C and that of the WT by over 15°C. Moreover, it exhibits higher binding affinity for spiperone, an antagonist which was previously proved to stabilize 5‐HT2AR in the inactive state.</description><identifier>ISSN: 0961-8368</identifier><identifier>EISSN: 1469-896X</identifier><identifier>DOI: 10.1002/pro.4404</identifier><language>eng</language><publisher>Hoboken, USA: John Wiley & Sons, Inc</publisher><subject>amino‐acid mutation ; antagonist ; Binding ; Chains ; configurational entropy ; Coupling (molecular) ; E coli ; G protein-coupled receptors ; G‐protein coupled receptor ; Homology ; hydrocarbon group ; hydrogen bond ; inactive state ; lipid molecule ; Methodology ; Molecular structure ; Mutants ; Mutation ; Proteins ; Receptors ; Recombination ; Residues ; Saturation ; Saturation mutagenesis ; Serotonin ; site‐directed saturation mutagenesis ; Spiperone ; Statistical thermodynamics ; Statistics ; Thermal denaturation ; Thermodynamics ; thermostabilization</subject><ispartof>Protein science, 2022-09, Vol.31 (9), p.n/a</ispartof><rights>2022 The Protein Society.</rights><rights>2022 The Protein Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3444-ae87bd3b7f05d2fa604282ca7604feb49a55b490c73128d115cdb6929cf40b783</citedby><cites>FETCH-LOGICAL-c3444-ae87bd3b7f05d2fa604282ca7604feb49a55b490c73128d115cdb6929cf40b783</cites><orcidid>0000-0001-8060-045X ; 0000-0001-8107-552X ; 0000-0003-1015-6781 ; 0000-0003-3555-1083</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Sugaya, Kanna</creatorcontrib><creatorcontrib>Yasuda, Satoshi</creatorcontrib><creatorcontrib>Sato, Shingo</creatorcontrib><creatorcontrib>Sisi, Chen</creatorcontrib><creatorcontrib>Yamamoto, Taisei</creatorcontrib><creatorcontrib>Umeno, Daisuke</creatorcontrib><creatorcontrib>Matsuura, Tomoaki</creatorcontrib><creatorcontrib>Hayashi, Tomohiko</creatorcontrib><creatorcontrib>Ogasawara, Satoshi</creatorcontrib><creatorcontrib>Kinoshita, Masahiro</creatorcontrib><creatorcontrib>Murata, Takeshi</creatorcontrib><title>A methodology for creating thermostabilized mutants of G‐protein coupled receptors by combining statistical thermodynamics and evolutionary molecular engineering</title><title>Protein science</title><description>We constructed a methodology for thermostabilizing a G‐protein coupled receptor (GPCR) in the inactive state whose wild‐type (WT) structure is unknown solely by multiple amino‐acid mutations without the ligand binding. It is a combination of our recently developed theory based on statistical thermodynamics and site‐directed saturation mutagenesis, a method often employed in evolutionary molecular engineering. First, the WT structure is predicted using the homology modeling. Second, a key residue is determined by our statistical‐thermodynamics theory using suitably modeled mutant structures. Many of 19 different single mutations for the key residue are expected to produce significantly higher stabilization. Third, we undertake to mutate not only the key residue but also a few more residues whose side chains are close to the side chain of the key residue. The whole mutational space is then efficiently explored by introducing site‐directed saturation mutations, and a gene (mutant) library is constructed using the small‐intelligent and fully automatic single‐tube recombination methods. Each mutant is expressed in Escherichia coli cells, and highly stabilized mutants are sorted out using a fluorescence‐screening technique. The methodology was illustrated for the serotonin 2A receptor, 5‐HT2AR, for stabilizing its inactive state. We could identify a double mutant whose apparent midpoint temperature of thermal denaturation is higher than that of a thermostabilized double mutant previously reported by ~8.9°C and that of the WT by over 15°C. Moreover, it exhibits higher binding affinity for spiperone, an antagonist which was previously proved to stabilize 5‐HT2AR in the inactive state.</description><subject>amino‐acid mutation</subject><subject>antagonist</subject><subject>Binding</subject><subject>Chains</subject><subject>configurational entropy</subject><subject>Coupling (molecular)</subject><subject>E coli</subject><subject>G protein-coupled receptors</subject><subject>G‐protein coupled receptor</subject><subject>Homology</subject><subject>hydrocarbon group</subject><subject>hydrogen bond</subject><subject>inactive state</subject><subject>lipid molecule</subject><subject>Methodology</subject><subject>Molecular structure</subject><subject>Mutants</subject><subject>Mutation</subject><subject>Proteins</subject><subject>Receptors</subject><subject>Recombination</subject><subject>Residues</subject><subject>Saturation</subject><subject>Saturation mutagenesis</subject><subject>Serotonin</subject><subject>site‐directed saturation mutagenesis</subject><subject>Spiperone</subject><subject>Statistical thermodynamics</subject><subject>Statistics</subject><subject>Thermal denaturation</subject><subject>Thermodynamics</subject><subject>thermostabilization</subject><issn>0961-8368</issn><issn>1469-896X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp1kc1KxDAQgIMouP6AjxDw4qVr0qZpe1wWXQVhRRS8lTSdrpE0WZNUqScfwXfwzXwSs65XL5OZ5OObCYPQCSVTSkh6vnZ2yhhhO2hCGa-SsuKPu2hCKk6TMuPlPjrw_pkQwmiaTdDXDPcQnmxrtV2NuLMOSwciKLPC4Qlcb30QjdLqHVrcD0GY4LHt8OL74zO2CqAMlnZY6_jsQMI6WOdxM8bLvlFmo4mCoHxQUug_ZTsa0SvpsTAthlerh6CsEW7EvdUgBy0cBrNSBsBFwxHa64T2cPx3HqKHy4v7-VVys1xcz2c3icwYY4mAsmjarCk6krdpJzhhaZlKUcSkg4ZVIs9jJLLIaFq2lOaybXiVVrJjpCnK7BCdbr3xYy8D-FA_28GZ2LJOC1KUec45j9TZlpLOeu-gq9dO9XH4mpJ6s4JY23qzgogmW_RNaRj_5erbu-Uv_wPT545O</recordid><startdate>202209</startdate><enddate>202209</enddate><creator>Sugaya, Kanna</creator><creator>Yasuda, Satoshi</creator><creator>Sato, Shingo</creator><creator>Sisi, Chen</creator><creator>Yamamoto, Taisei</creator><creator>Umeno, Daisuke</creator><creator>Matsuura, Tomoaki</creator><creator>Hayashi, Tomohiko</creator><creator>Ogasawara, Satoshi</creator><creator>Kinoshita, Masahiro</creator><creator>Murata, Takeshi</creator><general>John Wiley & Sons, Inc</general><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7T5</scope><scope>7TM</scope><scope>7U9</scope><scope>8FD</scope><scope>FR3</scope><scope>H94</scope><scope>K9.</scope><scope>P64</scope><scope>RC3</scope><orcidid>https://orcid.org/0000-0001-8060-045X</orcidid><orcidid>https://orcid.org/0000-0001-8107-552X</orcidid><orcidid>https://orcid.org/0000-0003-1015-6781</orcidid><orcidid>https://orcid.org/0000-0003-3555-1083</orcidid></search><sort><creationdate>202209</creationdate><title>A methodology for creating thermostabilized mutants of G‐protein coupled receptors by combining statistical thermodynamics and evolutionary molecular engineering</title><author>Sugaya, Kanna ; Yasuda, Satoshi ; Sato, Shingo ; Sisi, Chen ; Yamamoto, Taisei ; Umeno, Daisuke ; Matsuura, Tomoaki ; Hayashi, Tomohiko ; Ogasawara, Satoshi ; Kinoshita, Masahiro ; Murata, Takeshi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3444-ae87bd3b7f05d2fa604282ca7604feb49a55b490c73128d115cdb6929cf40b783</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>amino‐acid mutation</topic><topic>antagonist</topic><topic>Binding</topic><topic>Chains</topic><topic>configurational entropy</topic><topic>Coupling (molecular)</topic><topic>E coli</topic><topic>G protein-coupled receptors</topic><topic>G‐protein coupled receptor</topic><topic>Homology</topic><topic>hydrocarbon group</topic><topic>hydrogen bond</topic><topic>inactive state</topic><topic>lipid molecule</topic><topic>Methodology</topic><topic>Molecular structure</topic><topic>Mutants</topic><topic>Mutation</topic><topic>Proteins</topic><topic>Receptors</topic><topic>Recombination</topic><topic>Residues</topic><topic>Saturation</topic><topic>Saturation mutagenesis</topic><topic>Serotonin</topic><topic>site‐directed saturation mutagenesis</topic><topic>Spiperone</topic><topic>Statistical thermodynamics</topic><topic>Statistics</topic><topic>Thermal denaturation</topic><topic>Thermodynamics</topic><topic>thermostabilization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sugaya, Kanna</creatorcontrib><creatorcontrib>Yasuda, Satoshi</creatorcontrib><creatorcontrib>Sato, Shingo</creatorcontrib><creatorcontrib>Sisi, Chen</creatorcontrib><creatorcontrib>Yamamoto, Taisei</creatorcontrib><creatorcontrib>Umeno, Daisuke</creatorcontrib><creatorcontrib>Matsuura, Tomoaki</creatorcontrib><creatorcontrib>Hayashi, Tomohiko</creatorcontrib><creatorcontrib>Ogasawara, Satoshi</creatorcontrib><creatorcontrib>Kinoshita, Masahiro</creatorcontrib><creatorcontrib>Murata, Takeshi</creatorcontrib><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Immunology Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><jtitle>Protein science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sugaya, Kanna</au><au>Yasuda, Satoshi</au><au>Sato, Shingo</au><au>Sisi, Chen</au><au>Yamamoto, Taisei</au><au>Umeno, Daisuke</au><au>Matsuura, Tomoaki</au><au>Hayashi, Tomohiko</au><au>Ogasawara, Satoshi</au><au>Kinoshita, Masahiro</au><au>Murata, Takeshi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A methodology for creating thermostabilized mutants of G‐protein coupled receptors by combining statistical thermodynamics and evolutionary molecular engineering</atitle><jtitle>Protein science</jtitle><date>2022-09</date><risdate>2022</risdate><volume>31</volume><issue>9</issue><epage>n/a</epage><issn>0961-8368</issn><eissn>1469-896X</eissn><abstract>We constructed a methodology for thermostabilizing a G‐protein coupled receptor (GPCR) in the inactive state whose wild‐type (WT) structure is unknown solely by multiple amino‐acid mutations without the ligand binding. It is a combination of our recently developed theory based on statistical thermodynamics and site‐directed saturation mutagenesis, a method often employed in evolutionary molecular engineering. First, the WT structure is predicted using the homology modeling. Second, a key residue is determined by our statistical‐thermodynamics theory using suitably modeled mutant structures. Many of 19 different single mutations for the key residue are expected to produce significantly higher stabilization. Third, we undertake to mutate not only the key residue but also a few more residues whose side chains are close to the side chain of the key residue. The whole mutational space is then efficiently explored by introducing site‐directed saturation mutations, and a gene (mutant) library is constructed using the small‐intelligent and fully automatic single‐tube recombination methods. Each mutant is expressed in Escherichia coli cells, and highly stabilized mutants are sorted out using a fluorescence‐screening technique. The methodology was illustrated for the serotonin 2A receptor, 5‐HT2AR, for stabilizing its inactive state. We could identify a double mutant whose apparent midpoint temperature of thermal denaturation is higher than that of a thermostabilized double mutant previously reported by ~8.9°C and that of the WT by over 15°C. Moreover, it exhibits higher binding affinity for spiperone, an antagonist which was previously proved to stabilize 5‐HT2AR in the inactive state.</abstract><cop>Hoboken, USA</cop><pub>John Wiley & Sons, Inc</pub><doi>10.1002/pro.4404</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0001-8060-045X</orcidid><orcidid>https://orcid.org/0000-0001-8107-552X</orcidid><orcidid>https://orcid.org/0000-0003-1015-6781</orcidid><orcidid>https://orcid.org/0000-0003-3555-1083</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0961-8368 |
ispartof | Protein science, 2022-09, Vol.31 (9), p.n/a |
issn | 0961-8368 1469-896X |
language | eng |
recordid | cdi_proquest_journals_2707855666 |
source | Wiley; PubMed Central |
subjects | amino‐acid mutation antagonist Binding Chains configurational entropy Coupling (molecular) E coli G protein-coupled receptors G‐protein coupled receptor Homology hydrocarbon group hydrogen bond inactive state lipid molecule Methodology Molecular structure Mutants Mutation Proteins Receptors Recombination Residues Saturation Saturation mutagenesis Serotonin site‐directed saturation mutagenesis Spiperone Statistical thermodynamics Statistics Thermal denaturation Thermodynamics thermostabilization |
title | A methodology for creating thermostabilized mutants of G‐protein coupled receptors by combining statistical thermodynamics and evolutionary molecular engineering |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T16%3A10%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20methodology%20for%20creating%20thermostabilized%20mutants%20of%20G%E2%80%90protein%20coupled%20receptors%20by%20combining%20statistical%20thermodynamics%20and%20evolutionary%20molecular%20engineering&rft.jtitle=Protein%20science&rft.au=Sugaya,%20Kanna&rft.date=2022-09&rft.volume=31&rft.issue=9&rft.epage=n/a&rft.issn=0961-8368&rft.eissn=1469-896X&rft_id=info:doi/10.1002/pro.4404&rft_dat=%3Cproquest_cross%3E2707855666%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c3444-ae87bd3b7f05d2fa604282ca7604feb49a55b490c73128d115cdb6929cf40b783%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2707855666&rft_id=info:pmid/&rfr_iscdi=true |