Loading…

A methodology for creating thermostabilized mutants of G‐protein coupled receptors by combining statistical thermodynamics and evolutionary molecular engineering

We constructed a methodology for thermostabilizing a G‐protein coupled receptor (GPCR) in the inactive state whose wild‐type (WT) structure is unknown solely by multiple amino‐acid mutations without the ligand binding. It is a combination of our recently developed theory based on statistical thermod...

Full description

Saved in:
Bibliographic Details
Published in:Protein science 2022-09, Vol.31 (9), p.n/a
Main Authors: Sugaya, Kanna, Yasuda, Satoshi, Sato, Shingo, Sisi, Chen, Yamamoto, Taisei, Umeno, Daisuke, Matsuura, Tomoaki, Hayashi, Tomohiko, Ogasawara, Satoshi, Kinoshita, Masahiro, Murata, Takeshi
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c3444-ae87bd3b7f05d2fa604282ca7604feb49a55b490c73128d115cdb6929cf40b783
cites cdi_FETCH-LOGICAL-c3444-ae87bd3b7f05d2fa604282ca7604feb49a55b490c73128d115cdb6929cf40b783
container_end_page n/a
container_issue 9
container_start_page
container_title Protein science
container_volume 31
creator Sugaya, Kanna
Yasuda, Satoshi
Sato, Shingo
Sisi, Chen
Yamamoto, Taisei
Umeno, Daisuke
Matsuura, Tomoaki
Hayashi, Tomohiko
Ogasawara, Satoshi
Kinoshita, Masahiro
Murata, Takeshi
description We constructed a methodology for thermostabilizing a G‐protein coupled receptor (GPCR) in the inactive state whose wild‐type (WT) structure is unknown solely by multiple amino‐acid mutations without the ligand binding. It is a combination of our recently developed theory based on statistical thermodynamics and site‐directed saturation mutagenesis, a method often employed in evolutionary molecular engineering. First, the WT structure is predicted using the homology modeling. Second, a key residue is determined by our statistical‐thermodynamics theory using suitably modeled mutant structures. Many of 19 different single mutations for the key residue are expected to produce significantly higher stabilization. Third, we undertake to mutate not only the key residue but also a few more residues whose side chains are close to the side chain of the key residue. The whole mutational space is then efficiently explored by introducing site‐directed saturation mutations, and a gene (mutant) library is constructed using the small‐intelligent and fully automatic single‐tube recombination methods. Each mutant is expressed in Escherichia coli cells, and highly stabilized mutants are sorted out using a fluorescence‐screening technique. The methodology was illustrated for the serotonin 2A receptor, 5‐HT2AR, for stabilizing its inactive state. We could identify a double mutant whose apparent midpoint temperature of thermal denaturation is higher than that of a thermostabilized double mutant previously reported by ~8.9°C and that of the WT by over 15°C. Moreover, it exhibits higher binding affinity for spiperone, an antagonist which was previously proved to stabilize 5‐HT2AR in the inactive state.
doi_str_mv 10.1002/pro.4404
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2707855666</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2707855666</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3444-ae87bd3b7f05d2fa604282ca7604feb49a55b490c73128d115cdb6929cf40b783</originalsourceid><addsrcrecordid>eNp1kc1KxDAQgIMouP6AjxDw4qVr0qZpe1wWXQVhRRS8lTSdrpE0WZNUqScfwXfwzXwSs65XL5OZ5OObCYPQCSVTSkh6vnZ2yhhhO2hCGa-SsuKPu2hCKk6TMuPlPjrw_pkQwmiaTdDXDPcQnmxrtV2NuLMOSwciKLPC4Qlcb30QjdLqHVrcD0GY4LHt8OL74zO2CqAMlnZY6_jsQMI6WOdxM8bLvlFmo4mCoHxQUug_ZTsa0SvpsTAthlerh6CsEW7EvdUgBy0cBrNSBsBFwxHa64T2cPx3HqKHy4v7-VVys1xcz2c3icwYY4mAsmjarCk6krdpJzhhaZlKUcSkg4ZVIs9jJLLIaFq2lOaybXiVVrJjpCnK7BCdbr3xYy8D-FA_28GZ2LJOC1KUec45j9TZlpLOeu-gq9dO9XH4mpJ6s4JY23qzgogmW_RNaRj_5erbu-Uv_wPT545O</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2707855666</pqid></control><display><type>article</type><title>A methodology for creating thermostabilized mutants of G‐protein coupled receptors by combining statistical thermodynamics and evolutionary molecular engineering</title><source>Wiley</source><source>PubMed Central</source><creator>Sugaya, Kanna ; Yasuda, Satoshi ; Sato, Shingo ; Sisi, Chen ; Yamamoto, Taisei ; Umeno, Daisuke ; Matsuura, Tomoaki ; Hayashi, Tomohiko ; Ogasawara, Satoshi ; Kinoshita, Masahiro ; Murata, Takeshi</creator><creatorcontrib>Sugaya, Kanna ; Yasuda, Satoshi ; Sato, Shingo ; Sisi, Chen ; Yamamoto, Taisei ; Umeno, Daisuke ; Matsuura, Tomoaki ; Hayashi, Tomohiko ; Ogasawara, Satoshi ; Kinoshita, Masahiro ; Murata, Takeshi</creatorcontrib><description>We constructed a methodology for thermostabilizing a G‐protein coupled receptor (GPCR) in the inactive state whose wild‐type (WT) structure is unknown solely by multiple amino‐acid mutations without the ligand binding. It is a combination of our recently developed theory based on statistical thermodynamics and site‐directed saturation mutagenesis, a method often employed in evolutionary molecular engineering. First, the WT structure is predicted using the homology modeling. Second, a key residue is determined by our statistical‐thermodynamics theory using suitably modeled mutant structures. Many of 19 different single mutations for the key residue are expected to produce significantly higher stabilization. Third, we undertake to mutate not only the key residue but also a few more residues whose side chains are close to the side chain of the key residue. The whole mutational space is then efficiently explored by introducing site‐directed saturation mutations, and a gene (mutant) library is constructed using the small‐intelligent and fully automatic single‐tube recombination methods. Each mutant is expressed in Escherichia coli cells, and highly stabilized mutants are sorted out using a fluorescence‐screening technique. The methodology was illustrated for the serotonin 2A receptor, 5‐HT2AR, for stabilizing its inactive state. We could identify a double mutant whose apparent midpoint temperature of thermal denaturation is higher than that of a thermostabilized double mutant previously reported by ~8.9°C and that of the WT by over 15°C. Moreover, it exhibits higher binding affinity for spiperone, an antagonist which was previously proved to stabilize 5‐HT2AR in the inactive state.</description><identifier>ISSN: 0961-8368</identifier><identifier>EISSN: 1469-896X</identifier><identifier>DOI: 10.1002/pro.4404</identifier><language>eng</language><publisher>Hoboken, USA: John Wiley &amp; Sons, Inc</publisher><subject>amino‐acid mutation ; antagonist ; Binding ; Chains ; configurational entropy ; Coupling (molecular) ; E coli ; G protein-coupled receptors ; G‐protein coupled receptor ; Homology ; hydrocarbon group ; hydrogen bond ; inactive state ; lipid molecule ; Methodology ; Molecular structure ; Mutants ; Mutation ; Proteins ; Receptors ; Recombination ; Residues ; Saturation ; Saturation mutagenesis ; Serotonin ; site‐directed saturation mutagenesis ; Spiperone ; Statistical thermodynamics ; Statistics ; Thermal denaturation ; Thermodynamics ; thermostabilization</subject><ispartof>Protein science, 2022-09, Vol.31 (9), p.n/a</ispartof><rights>2022 The Protein Society.</rights><rights>2022 The Protein Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3444-ae87bd3b7f05d2fa604282ca7604feb49a55b490c73128d115cdb6929cf40b783</citedby><cites>FETCH-LOGICAL-c3444-ae87bd3b7f05d2fa604282ca7604feb49a55b490c73128d115cdb6929cf40b783</cites><orcidid>0000-0001-8060-045X ; 0000-0001-8107-552X ; 0000-0003-1015-6781 ; 0000-0003-3555-1083</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Sugaya, Kanna</creatorcontrib><creatorcontrib>Yasuda, Satoshi</creatorcontrib><creatorcontrib>Sato, Shingo</creatorcontrib><creatorcontrib>Sisi, Chen</creatorcontrib><creatorcontrib>Yamamoto, Taisei</creatorcontrib><creatorcontrib>Umeno, Daisuke</creatorcontrib><creatorcontrib>Matsuura, Tomoaki</creatorcontrib><creatorcontrib>Hayashi, Tomohiko</creatorcontrib><creatorcontrib>Ogasawara, Satoshi</creatorcontrib><creatorcontrib>Kinoshita, Masahiro</creatorcontrib><creatorcontrib>Murata, Takeshi</creatorcontrib><title>A methodology for creating thermostabilized mutants of G‐protein coupled receptors by combining statistical thermodynamics and evolutionary molecular engineering</title><title>Protein science</title><description>We constructed a methodology for thermostabilizing a G‐protein coupled receptor (GPCR) in the inactive state whose wild‐type (WT) structure is unknown solely by multiple amino‐acid mutations without the ligand binding. It is a combination of our recently developed theory based on statistical thermodynamics and site‐directed saturation mutagenesis, a method often employed in evolutionary molecular engineering. First, the WT structure is predicted using the homology modeling. Second, a key residue is determined by our statistical‐thermodynamics theory using suitably modeled mutant structures. Many of 19 different single mutations for the key residue are expected to produce significantly higher stabilization. Third, we undertake to mutate not only the key residue but also a few more residues whose side chains are close to the side chain of the key residue. The whole mutational space is then efficiently explored by introducing site‐directed saturation mutations, and a gene (mutant) library is constructed using the small‐intelligent and fully automatic single‐tube recombination methods. Each mutant is expressed in Escherichia coli cells, and highly stabilized mutants are sorted out using a fluorescence‐screening technique. The methodology was illustrated for the serotonin 2A receptor, 5‐HT2AR, for stabilizing its inactive state. We could identify a double mutant whose apparent midpoint temperature of thermal denaturation is higher than that of a thermostabilized double mutant previously reported by ~8.9°C and that of the WT by over 15°C. Moreover, it exhibits higher binding affinity for spiperone, an antagonist which was previously proved to stabilize 5‐HT2AR in the inactive state.</description><subject>amino‐acid mutation</subject><subject>antagonist</subject><subject>Binding</subject><subject>Chains</subject><subject>configurational entropy</subject><subject>Coupling (molecular)</subject><subject>E coli</subject><subject>G protein-coupled receptors</subject><subject>G‐protein coupled receptor</subject><subject>Homology</subject><subject>hydrocarbon group</subject><subject>hydrogen bond</subject><subject>inactive state</subject><subject>lipid molecule</subject><subject>Methodology</subject><subject>Molecular structure</subject><subject>Mutants</subject><subject>Mutation</subject><subject>Proteins</subject><subject>Receptors</subject><subject>Recombination</subject><subject>Residues</subject><subject>Saturation</subject><subject>Saturation mutagenesis</subject><subject>Serotonin</subject><subject>site‐directed saturation mutagenesis</subject><subject>Spiperone</subject><subject>Statistical thermodynamics</subject><subject>Statistics</subject><subject>Thermal denaturation</subject><subject>Thermodynamics</subject><subject>thermostabilization</subject><issn>0961-8368</issn><issn>1469-896X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp1kc1KxDAQgIMouP6AjxDw4qVr0qZpe1wWXQVhRRS8lTSdrpE0WZNUqScfwXfwzXwSs65XL5OZ5OObCYPQCSVTSkh6vnZ2yhhhO2hCGa-SsuKPu2hCKk6TMuPlPjrw_pkQwmiaTdDXDPcQnmxrtV2NuLMOSwciKLPC4Qlcb30QjdLqHVrcD0GY4LHt8OL74zO2CqAMlnZY6_jsQMI6WOdxM8bLvlFmo4mCoHxQUug_ZTsa0SvpsTAthlerh6CsEW7EvdUgBy0cBrNSBsBFwxHa64T2cPx3HqKHy4v7-VVys1xcz2c3icwYY4mAsmjarCk6krdpJzhhaZlKUcSkg4ZVIs9jJLLIaFq2lOaybXiVVrJjpCnK7BCdbr3xYy8D-FA_28GZ2LJOC1KUec45j9TZlpLOeu-gq9dO9XH4mpJ6s4JY23qzgogmW_RNaRj_5erbu-Uv_wPT545O</recordid><startdate>202209</startdate><enddate>202209</enddate><creator>Sugaya, Kanna</creator><creator>Yasuda, Satoshi</creator><creator>Sato, Shingo</creator><creator>Sisi, Chen</creator><creator>Yamamoto, Taisei</creator><creator>Umeno, Daisuke</creator><creator>Matsuura, Tomoaki</creator><creator>Hayashi, Tomohiko</creator><creator>Ogasawara, Satoshi</creator><creator>Kinoshita, Masahiro</creator><creator>Murata, Takeshi</creator><general>John Wiley &amp; Sons, Inc</general><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7T5</scope><scope>7TM</scope><scope>7U9</scope><scope>8FD</scope><scope>FR3</scope><scope>H94</scope><scope>K9.</scope><scope>P64</scope><scope>RC3</scope><orcidid>https://orcid.org/0000-0001-8060-045X</orcidid><orcidid>https://orcid.org/0000-0001-8107-552X</orcidid><orcidid>https://orcid.org/0000-0003-1015-6781</orcidid><orcidid>https://orcid.org/0000-0003-3555-1083</orcidid></search><sort><creationdate>202209</creationdate><title>A methodology for creating thermostabilized mutants of G‐protein coupled receptors by combining statistical thermodynamics and evolutionary molecular engineering</title><author>Sugaya, Kanna ; Yasuda, Satoshi ; Sato, Shingo ; Sisi, Chen ; Yamamoto, Taisei ; Umeno, Daisuke ; Matsuura, Tomoaki ; Hayashi, Tomohiko ; Ogasawara, Satoshi ; Kinoshita, Masahiro ; Murata, Takeshi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3444-ae87bd3b7f05d2fa604282ca7604feb49a55b490c73128d115cdb6929cf40b783</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>amino‐acid mutation</topic><topic>antagonist</topic><topic>Binding</topic><topic>Chains</topic><topic>configurational entropy</topic><topic>Coupling (molecular)</topic><topic>E coli</topic><topic>G protein-coupled receptors</topic><topic>G‐protein coupled receptor</topic><topic>Homology</topic><topic>hydrocarbon group</topic><topic>hydrogen bond</topic><topic>inactive state</topic><topic>lipid molecule</topic><topic>Methodology</topic><topic>Molecular structure</topic><topic>Mutants</topic><topic>Mutation</topic><topic>Proteins</topic><topic>Receptors</topic><topic>Recombination</topic><topic>Residues</topic><topic>Saturation</topic><topic>Saturation mutagenesis</topic><topic>Serotonin</topic><topic>site‐directed saturation mutagenesis</topic><topic>Spiperone</topic><topic>Statistical thermodynamics</topic><topic>Statistics</topic><topic>Thermal denaturation</topic><topic>Thermodynamics</topic><topic>thermostabilization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sugaya, Kanna</creatorcontrib><creatorcontrib>Yasuda, Satoshi</creatorcontrib><creatorcontrib>Sato, Shingo</creatorcontrib><creatorcontrib>Sisi, Chen</creatorcontrib><creatorcontrib>Yamamoto, Taisei</creatorcontrib><creatorcontrib>Umeno, Daisuke</creatorcontrib><creatorcontrib>Matsuura, Tomoaki</creatorcontrib><creatorcontrib>Hayashi, Tomohiko</creatorcontrib><creatorcontrib>Ogasawara, Satoshi</creatorcontrib><creatorcontrib>Kinoshita, Masahiro</creatorcontrib><creatorcontrib>Murata, Takeshi</creatorcontrib><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Immunology Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><jtitle>Protein science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sugaya, Kanna</au><au>Yasuda, Satoshi</au><au>Sato, Shingo</au><au>Sisi, Chen</au><au>Yamamoto, Taisei</au><au>Umeno, Daisuke</au><au>Matsuura, Tomoaki</au><au>Hayashi, Tomohiko</au><au>Ogasawara, Satoshi</au><au>Kinoshita, Masahiro</au><au>Murata, Takeshi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A methodology for creating thermostabilized mutants of G‐protein coupled receptors by combining statistical thermodynamics and evolutionary molecular engineering</atitle><jtitle>Protein science</jtitle><date>2022-09</date><risdate>2022</risdate><volume>31</volume><issue>9</issue><epage>n/a</epage><issn>0961-8368</issn><eissn>1469-896X</eissn><abstract>We constructed a methodology for thermostabilizing a G‐protein coupled receptor (GPCR) in the inactive state whose wild‐type (WT) structure is unknown solely by multiple amino‐acid mutations without the ligand binding. It is a combination of our recently developed theory based on statistical thermodynamics and site‐directed saturation mutagenesis, a method often employed in evolutionary molecular engineering. First, the WT structure is predicted using the homology modeling. Second, a key residue is determined by our statistical‐thermodynamics theory using suitably modeled mutant structures. Many of 19 different single mutations for the key residue are expected to produce significantly higher stabilization. Third, we undertake to mutate not only the key residue but also a few more residues whose side chains are close to the side chain of the key residue. The whole mutational space is then efficiently explored by introducing site‐directed saturation mutations, and a gene (mutant) library is constructed using the small‐intelligent and fully automatic single‐tube recombination methods. Each mutant is expressed in Escherichia coli cells, and highly stabilized mutants are sorted out using a fluorescence‐screening technique. The methodology was illustrated for the serotonin 2A receptor, 5‐HT2AR, for stabilizing its inactive state. We could identify a double mutant whose apparent midpoint temperature of thermal denaturation is higher than that of a thermostabilized double mutant previously reported by ~8.9°C and that of the WT by over 15°C. Moreover, it exhibits higher binding affinity for spiperone, an antagonist which was previously proved to stabilize 5‐HT2AR in the inactive state.</abstract><cop>Hoboken, USA</cop><pub>John Wiley &amp; Sons, Inc</pub><doi>10.1002/pro.4404</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0001-8060-045X</orcidid><orcidid>https://orcid.org/0000-0001-8107-552X</orcidid><orcidid>https://orcid.org/0000-0003-1015-6781</orcidid><orcidid>https://orcid.org/0000-0003-3555-1083</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0961-8368
ispartof Protein science, 2022-09, Vol.31 (9), p.n/a
issn 0961-8368
1469-896X
language eng
recordid cdi_proquest_journals_2707855666
source Wiley; PubMed Central
subjects amino‐acid mutation
antagonist
Binding
Chains
configurational entropy
Coupling (molecular)
E coli
G protein-coupled receptors
G‐protein coupled receptor
Homology
hydrocarbon group
hydrogen bond
inactive state
lipid molecule
Methodology
Molecular structure
Mutants
Mutation
Proteins
Receptors
Recombination
Residues
Saturation
Saturation mutagenesis
Serotonin
site‐directed saturation mutagenesis
Spiperone
Statistical thermodynamics
Statistics
Thermal denaturation
Thermodynamics
thermostabilization
title A methodology for creating thermostabilized mutants of G‐protein coupled receptors by combining statistical thermodynamics and evolutionary molecular engineering
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T16%3A10%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20methodology%20for%20creating%20thermostabilized%20mutants%20of%20G%E2%80%90protein%20coupled%20receptors%20by%20combining%20statistical%20thermodynamics%20and%20evolutionary%20molecular%20engineering&rft.jtitle=Protein%20science&rft.au=Sugaya,%20Kanna&rft.date=2022-09&rft.volume=31&rft.issue=9&rft.epage=n/a&rft.issn=0961-8368&rft.eissn=1469-896X&rft_id=info:doi/10.1002/pro.4404&rft_dat=%3Cproquest_cross%3E2707855666%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c3444-ae87bd3b7f05d2fa604282ca7604feb49a55b490c73128d115cdb6929cf40b783%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2707855666&rft_id=info:pmid/&rfr_iscdi=true