Loading…

Finite-by-Nilpotent Groups and a Variation of the BFC-Theorem

For a group G and an element a ∈ G , let | a | k denote the cardinality of the set of commutators [ a , x 1 , ⋯ , x k ] , where x 1 , ⋯ , x k range over G . The main result of the paper states that a group G is finite-by-nilpotent if and only if there are positive integers k and n , such that | x |...

Full description

Saved in:
Bibliographic Details
Published in:Mediterranean journal of mathematics 2022-10, Vol.19 (5), Article 202
Main Author: Shumyatsky, Pavel
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c319t-d8f6a2c57b807da86d0ac6a1b3d33281f6490a61c98e54d5bc240a4d7b5f7f503
cites cdi_FETCH-LOGICAL-c319t-d8f6a2c57b807da86d0ac6a1b3d33281f6490a61c98e54d5bc240a4d7b5f7f503
container_end_page
container_issue 5
container_start_page
container_title Mediterranean journal of mathematics
container_volume 19
creator Shumyatsky, Pavel
description For a group G and an element a ∈ G , let | a | k denote the cardinality of the set of commutators [ a , x 1 , ⋯ , x k ] , where x 1 , ⋯ , x k range over G . The main result of the paper states that a group G is finite-by-nilpotent if and only if there are positive integers k and n , such that | x | k ≤ n for every x ∈ G . More precisely, if | x | k ≤ n for every x ∈ G , then γ k + 1 ( G ) has finite ( k ,  n )-bounded order. Furthermore, in any group G , the set F C k ( G ) = { x ∈ G ; | x | k < ∞ } is a subgroup and γ k + 1 ( F C k ( G ) ) is locally normal.
doi_str_mv 10.1007/s00009-022-02140-0
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2707899407</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2707899407</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-d8f6a2c57b807da86d0ac6a1b3d33281f6490a61c98e54d5bc240a4d7b5f7f503</originalsourceid><addsrcrecordid>eNp9kD1PwzAQhi0EEuXjDzBZYjacHceOBwaoaEGqYCmslhPbNFUbB9sd-u9JCYKNk053w_shPQhdUbihAPI2wTCKAGPDUg4EjtCECgGk5CU__v25OEVnKa0BmKIFm6C7Wdu12ZF6T17aTR-y6zKex7DrEzadxQa_m9ia3IYOB4_zyuGH2ZQsVy5Et71AJ95skrv8uefobfa4nD6Rxev8eXq_IE1BVSa28sKwppR1BdKaSlgwjTC0LmxRsIp6wRUYQRtVuZLbsm4YB8OtrEsvfQnFOboec_sYPncuZb0Ou9gNlZpJkJVSHOSgYqOqiSGl6LzuY7s1ca8p6AMmPWLSAyb9jUkfoovRlAZx9-HiX_Q_ri8Oz2iX</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2707899407</pqid></control><display><type>article</type><title>Finite-by-Nilpotent Groups and a Variation of the BFC-Theorem</title><source>Springer Nature</source><creator>Shumyatsky, Pavel</creator><creatorcontrib>Shumyatsky, Pavel</creatorcontrib><description>For a group G and an element a ∈ G , let | a | k denote the cardinality of the set of commutators [ a , x 1 , ⋯ , x k ] , where x 1 , ⋯ , x k range over G . The main result of the paper states that a group G is finite-by-nilpotent if and only if there are positive integers k and n , such that | x | k ≤ n for every x ∈ G . More precisely, if | x | k ≤ n for every x ∈ G , then γ k + 1 ( G ) has finite ( k ,  n )-bounded order. Furthermore, in any group G , the set F C k ( G ) = { x ∈ G ; | x | k &lt; ∞ } is a subgroup and γ k + 1 ( F C k ( G ) ) is locally normal.</description><identifier>ISSN: 1660-5446</identifier><identifier>EISSN: 1660-5454</identifier><identifier>DOI: 10.1007/s00009-022-02140-0</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Commutators ; Mathematics ; Mathematics and Statistics ; Subgroups</subject><ispartof>Mediterranean journal of mathematics, 2022-10, Vol.19 (5), Article 202</ispartof><rights>The Author(s), under exclusive licence to Springer Nature Switzerland AG 2022. Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-d8f6a2c57b807da86d0ac6a1b3d33281f6490a61c98e54d5bc240a4d7b5f7f503</citedby><cites>FETCH-LOGICAL-c319t-d8f6a2c57b807da86d0ac6a1b3d33281f6490a61c98e54d5bc240a4d7b5f7f503</cites><orcidid>0000-0002-4976-5675</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Shumyatsky, Pavel</creatorcontrib><title>Finite-by-Nilpotent Groups and a Variation of the BFC-Theorem</title><title>Mediterranean journal of mathematics</title><addtitle>Mediterr. J. Math</addtitle><description>For a group G and an element a ∈ G , let | a | k denote the cardinality of the set of commutators [ a , x 1 , ⋯ , x k ] , where x 1 , ⋯ , x k range over G . The main result of the paper states that a group G is finite-by-nilpotent if and only if there are positive integers k and n , such that | x | k ≤ n for every x ∈ G . More precisely, if | x | k ≤ n for every x ∈ G , then γ k + 1 ( G ) has finite ( k ,  n )-bounded order. Furthermore, in any group G , the set F C k ( G ) = { x ∈ G ; | x | k &lt; ∞ } is a subgroup and γ k + 1 ( F C k ( G ) ) is locally normal.</description><subject>Commutators</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Subgroups</subject><issn>1660-5446</issn><issn>1660-5454</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kD1PwzAQhi0EEuXjDzBZYjacHceOBwaoaEGqYCmslhPbNFUbB9sd-u9JCYKNk053w_shPQhdUbihAPI2wTCKAGPDUg4EjtCECgGk5CU__v25OEVnKa0BmKIFm6C7Wdu12ZF6T17aTR-y6zKex7DrEzadxQa_m9ia3IYOB4_zyuGH2ZQsVy5Et71AJ95skrv8uefobfa4nD6Rxev8eXq_IE1BVSa28sKwppR1BdKaSlgwjTC0LmxRsIp6wRUYQRtVuZLbsm4YB8OtrEsvfQnFOboec_sYPncuZb0Ou9gNlZpJkJVSHOSgYqOqiSGl6LzuY7s1ca8p6AMmPWLSAyb9jUkfoovRlAZx9-HiX_Q_ri8Oz2iX</recordid><startdate>20221001</startdate><enddate>20221001</enddate><creator>Shumyatsky, Pavel</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-4976-5675</orcidid></search><sort><creationdate>20221001</creationdate><title>Finite-by-Nilpotent Groups and a Variation of the BFC-Theorem</title><author>Shumyatsky, Pavel</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-d8f6a2c57b807da86d0ac6a1b3d33281f6490a61c98e54d5bc240a4d7b5f7f503</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Commutators</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Subgroups</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shumyatsky, Pavel</creatorcontrib><collection>CrossRef</collection><jtitle>Mediterranean journal of mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shumyatsky, Pavel</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Finite-by-Nilpotent Groups and a Variation of the BFC-Theorem</atitle><jtitle>Mediterranean journal of mathematics</jtitle><stitle>Mediterr. J. Math</stitle><date>2022-10-01</date><risdate>2022</risdate><volume>19</volume><issue>5</issue><artnum>202</artnum><issn>1660-5446</issn><eissn>1660-5454</eissn><abstract>For a group G and an element a ∈ G , let | a | k denote the cardinality of the set of commutators [ a , x 1 , ⋯ , x k ] , where x 1 , ⋯ , x k range over G . The main result of the paper states that a group G is finite-by-nilpotent if and only if there are positive integers k and n , such that | x | k ≤ n for every x ∈ G . More precisely, if | x | k ≤ n for every x ∈ G , then γ k + 1 ( G ) has finite ( k ,  n )-bounded order. Furthermore, in any group G , the set F C k ( G ) = { x ∈ G ; | x | k &lt; ∞ } is a subgroup and γ k + 1 ( F C k ( G ) ) is locally normal.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1007/s00009-022-02140-0</doi><orcidid>https://orcid.org/0000-0002-4976-5675</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1660-5446
ispartof Mediterranean journal of mathematics, 2022-10, Vol.19 (5), Article 202
issn 1660-5446
1660-5454
language eng
recordid cdi_proquest_journals_2707899407
source Springer Nature
subjects Commutators
Mathematics
Mathematics and Statistics
Subgroups
title Finite-by-Nilpotent Groups and a Variation of the BFC-Theorem
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T01%3A18%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Finite-by-Nilpotent%20Groups%20and%20a%20Variation%20of%20the%20BFC-Theorem&rft.jtitle=Mediterranean%20journal%20of%20mathematics&rft.au=Shumyatsky,%20Pavel&rft.date=2022-10-01&rft.volume=19&rft.issue=5&rft.artnum=202&rft.issn=1660-5446&rft.eissn=1660-5454&rft_id=info:doi/10.1007/s00009-022-02140-0&rft_dat=%3Cproquest_cross%3E2707899407%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c319t-d8f6a2c57b807da86d0ac6a1b3d33281f6490a61c98e54d5bc240a4d7b5f7f503%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2707899407&rft_id=info:pmid/&rfr_iscdi=true