Loading…
Accurate measurement of thin film mechanical properties using nanoindentation
For decades, nanoindentation has been used for measuring mechanical properties of films with the widely used assumption that if the indentation depth does not exceed 10% of the film thickness, the substrate influence is negligible. The 10% rule was originally deduced for much thicker metallic films...
Saved in:
Published in: | Journal of materials research 2022-04, Vol.37 (7), p.1373-1389 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c359t-576704f155ba7863c078ab334ba2e83ca8cadcc944f631dd0bb72a60eb5741f23 |
---|---|
cites | cdi_FETCH-LOGICAL-c359t-576704f155ba7863c078ab334ba2e83ca8cadcc944f631dd0bb72a60eb5741f23 |
container_end_page | 1389 |
container_issue | 7 |
container_start_page | 1373 |
container_title | Journal of materials research |
container_volume | 37 |
creator | Zak, S. Trost, C. O. W. Kreiml, P. Cordill, M. J. |
description | For decades, nanoindentation has been used for measuring mechanical properties of films with the widely used assumption that if the indentation depth does not exceed 10% of the film thickness, the substrate influence is negligible. The 10% rule was originally deduced for much thicker metallic films on steel substrates and involved only the hardness measurement. Thus, the boundaries of usability for measuring thin film elastic modulus may differ. Two known material systems of Mo and MoTa thin films on Si substrates are examined with nanoindentation and numerical modeling to show the limitations in measuring elastic moduli. An assessment of the hardness and elastic modulus as a function of contact depth and accurate modeling of the film/substrate deformation confirms the 10% rule for hardness measurements. For elastic modulus, the indentation depths should be much smaller. Results provide a recommended testing protocol for accurate assessment of thin film elastic modulus using nanoindentation.
Graphical abstract |
doi_str_mv | 10.1557/s43578-022-00541-1 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2708280365</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2708280365</sourcerecordid><originalsourceid>FETCH-LOGICAL-c359t-576704f155ba7863c078ab334ba2e83ca8cadcc944f631dd0bb72a60eb5741f23</originalsourceid><addsrcrecordid>eNp9kD1PwzAQhi0EEqXwB5giMRvOX7E7VhVfUhELzJbjOK2rxCm2M_DvMQSJjemGe5_3Tg9C1wRuiRDyLnEmpMJAKQYQnGByghYUOMeC0foULUApjumK8HN0kdIBgAiQfIFe1tZO0WRXDc6kKbrBhVyNXZX3PlSd74eysHsTvDV9dYzj0cXsXaqm5MOuCiaMPrSFMdmP4RKddaZP7up3LtH7w_3b5glvXx-fN-sttkysMhaylsC78nljpKqZBalMwxhvDHWKWaOsaa1dcd7VjLQtNI2kpgbXCMlJR9kS3cy95aGPyaWsD-MUQzmpqQRFFbBalBSdUzaOKUXX6WP0g4mfmoD-1qZnbbpo0z_aNCkQm6FUwmHn4l_1P9QXejhw3w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2708280365</pqid></control><display><type>article</type><title>Accurate measurement of thin film mechanical properties using nanoindentation</title><source>Springer Link</source><creator>Zak, S. ; Trost, C. O. W. ; Kreiml, P. ; Cordill, M. J.</creator><creatorcontrib>Zak, S. ; Trost, C. O. W. ; Kreiml, P. ; Cordill, M. J.</creatorcontrib><description>For decades, nanoindentation has been used for measuring mechanical properties of films with the widely used assumption that if the indentation depth does not exceed 10% of the film thickness, the substrate influence is negligible. The 10% rule was originally deduced for much thicker metallic films on steel substrates and involved only the hardness measurement. Thus, the boundaries of usability for measuring thin film elastic modulus may differ. Two known material systems of Mo and MoTa thin films on Si substrates are examined with nanoindentation and numerical modeling to show the limitations in measuring elastic moduli. An assessment of the hardness and elastic modulus as a function of contact depth and accurate modeling of the film/substrate deformation confirms the 10% rule for hardness measurements. For elastic modulus, the indentation depths should be much smaller. Results provide a recommended testing protocol for accurate assessment of thin film elastic modulus using nanoindentation.
Graphical abstract</description><identifier>ISSN: 0884-2914</identifier><identifier>EISSN: 2044-5326</identifier><identifier>DOI: 10.1557/s43578-022-00541-1</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Applied and Technical Physics ; Biomaterials ; Chemistry and Materials Science ; Elastic deformation ; Elastic limit ; Film thickness ; Hardness measurement ; Inorganic Chemistry ; Materials Engineering ; Materials research ; Materials Science ; Mechanical properties ; Modulus of elasticity ; Nanoindentation ; Nanotechnology ; Silicon substrates ; Thin films</subject><ispartof>Journal of materials research, 2022-04, Vol.37 (7), p.1373-1389</ispartof><rights>The Author(s) 2022</rights><rights>The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c359t-576704f155ba7863c078ab334ba2e83ca8cadcc944f631dd0bb72a60eb5741f23</citedby><cites>FETCH-LOGICAL-c359t-576704f155ba7863c078ab334ba2e83ca8cadcc944f631dd0bb72a60eb5741f23</cites><orcidid>0000-0002-8337-5267 ; 0000-0003-1329-8072 ; 0000-0002-7570-688X ; 0000-0003-1142-8312</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids></links><search><creatorcontrib>Zak, S.</creatorcontrib><creatorcontrib>Trost, C. O. W.</creatorcontrib><creatorcontrib>Kreiml, P.</creatorcontrib><creatorcontrib>Cordill, M. J.</creatorcontrib><title>Accurate measurement of thin film mechanical properties using nanoindentation</title><title>Journal of materials research</title><addtitle>Journal of Materials Research</addtitle><description>For decades, nanoindentation has been used for measuring mechanical properties of films with the widely used assumption that if the indentation depth does not exceed 10% of the film thickness, the substrate influence is negligible. The 10% rule was originally deduced for much thicker metallic films on steel substrates and involved only the hardness measurement. Thus, the boundaries of usability for measuring thin film elastic modulus may differ. Two known material systems of Mo and MoTa thin films on Si substrates are examined with nanoindentation and numerical modeling to show the limitations in measuring elastic moduli. An assessment of the hardness and elastic modulus as a function of contact depth and accurate modeling of the film/substrate deformation confirms the 10% rule for hardness measurements. For elastic modulus, the indentation depths should be much smaller. Results provide a recommended testing protocol for accurate assessment of thin film elastic modulus using nanoindentation.
Graphical abstract</description><subject>Applied and Technical Physics</subject><subject>Biomaterials</subject><subject>Chemistry and Materials Science</subject><subject>Elastic deformation</subject><subject>Elastic limit</subject><subject>Film thickness</subject><subject>Hardness measurement</subject><subject>Inorganic Chemistry</subject><subject>Materials Engineering</subject><subject>Materials research</subject><subject>Materials Science</subject><subject>Mechanical properties</subject><subject>Modulus of elasticity</subject><subject>Nanoindentation</subject><subject>Nanotechnology</subject><subject>Silicon substrates</subject><subject>Thin films</subject><issn>0884-2914</issn><issn>2044-5326</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kD1PwzAQhi0EEqXwB5giMRvOX7E7VhVfUhELzJbjOK2rxCm2M_DvMQSJjemGe5_3Tg9C1wRuiRDyLnEmpMJAKQYQnGByghYUOMeC0foULUApjumK8HN0kdIBgAiQfIFe1tZO0WRXDc6kKbrBhVyNXZX3PlSd74eysHsTvDV9dYzj0cXsXaqm5MOuCiaMPrSFMdmP4RKddaZP7up3LtH7w_3b5glvXx-fN-sttkysMhaylsC78nljpKqZBalMwxhvDHWKWaOsaa1dcd7VjLQtNI2kpgbXCMlJR9kS3cy95aGPyaWsD-MUQzmpqQRFFbBalBSdUzaOKUXX6WP0g4mfmoD-1qZnbbpo0z_aNCkQm6FUwmHn4l_1P9QXejhw3w</recordid><startdate>20220414</startdate><enddate>20220414</enddate><creator>Zak, S.</creator><creator>Trost, C. O. W.</creator><creator>Kreiml, P.</creator><creator>Cordill, M. J.</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><orcidid>https://orcid.org/0000-0002-8337-5267</orcidid><orcidid>https://orcid.org/0000-0003-1329-8072</orcidid><orcidid>https://orcid.org/0000-0002-7570-688X</orcidid><orcidid>https://orcid.org/0000-0003-1142-8312</orcidid></search><sort><creationdate>20220414</creationdate><title>Accurate measurement of thin film mechanical properties using nanoindentation</title><author>Zak, S. ; Trost, C. O. W. ; Kreiml, P. ; Cordill, M. J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c359t-576704f155ba7863c078ab334ba2e83ca8cadcc944f631dd0bb72a60eb5741f23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Applied and Technical Physics</topic><topic>Biomaterials</topic><topic>Chemistry and Materials Science</topic><topic>Elastic deformation</topic><topic>Elastic limit</topic><topic>Film thickness</topic><topic>Hardness measurement</topic><topic>Inorganic Chemistry</topic><topic>Materials Engineering</topic><topic>Materials research</topic><topic>Materials Science</topic><topic>Mechanical properties</topic><topic>Modulus of elasticity</topic><topic>Nanoindentation</topic><topic>Nanotechnology</topic><topic>Silicon substrates</topic><topic>Thin films</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zak, S.</creatorcontrib><creatorcontrib>Trost, C. O. W.</creatorcontrib><creatorcontrib>Kreiml, P.</creatorcontrib><creatorcontrib>Cordill, M. J.</creatorcontrib><collection>SpringerOpen</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Journal of materials research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zak, S.</au><au>Trost, C. O. W.</au><au>Kreiml, P.</au><au>Cordill, M. J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Accurate measurement of thin film mechanical properties using nanoindentation</atitle><jtitle>Journal of materials research</jtitle><stitle>Journal of Materials Research</stitle><date>2022-04-14</date><risdate>2022</risdate><volume>37</volume><issue>7</issue><spage>1373</spage><epage>1389</epage><pages>1373-1389</pages><issn>0884-2914</issn><eissn>2044-5326</eissn><abstract>For decades, nanoindentation has been used for measuring mechanical properties of films with the widely used assumption that if the indentation depth does not exceed 10% of the film thickness, the substrate influence is negligible. The 10% rule was originally deduced for much thicker metallic films on steel substrates and involved only the hardness measurement. Thus, the boundaries of usability for measuring thin film elastic modulus may differ. Two known material systems of Mo and MoTa thin films on Si substrates are examined with nanoindentation and numerical modeling to show the limitations in measuring elastic moduli. An assessment of the hardness and elastic modulus as a function of contact depth and accurate modeling of the film/substrate deformation confirms the 10% rule for hardness measurements. For elastic modulus, the indentation depths should be much smaller. Results provide a recommended testing protocol for accurate assessment of thin film elastic modulus using nanoindentation.
Graphical abstract</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1557/s43578-022-00541-1</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0002-8337-5267</orcidid><orcidid>https://orcid.org/0000-0003-1329-8072</orcidid><orcidid>https://orcid.org/0000-0002-7570-688X</orcidid><orcidid>https://orcid.org/0000-0003-1142-8312</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0884-2914 |
ispartof | Journal of materials research, 2022-04, Vol.37 (7), p.1373-1389 |
issn | 0884-2914 2044-5326 |
language | eng |
recordid | cdi_proquest_journals_2708280365 |
source | Springer Link |
subjects | Applied and Technical Physics Biomaterials Chemistry and Materials Science Elastic deformation Elastic limit Film thickness Hardness measurement Inorganic Chemistry Materials Engineering Materials research Materials Science Mechanical properties Modulus of elasticity Nanoindentation Nanotechnology Silicon substrates Thin films |
title | Accurate measurement of thin film mechanical properties using nanoindentation |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T10%3A46%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Accurate%20measurement%20of%20thin%20film%20mechanical%20properties%20using%20nanoindentation&rft.jtitle=Journal%20of%20materials%20research&rft.au=Zak,%20S.&rft.date=2022-04-14&rft.volume=37&rft.issue=7&rft.spage=1373&rft.epage=1389&rft.pages=1373-1389&rft.issn=0884-2914&rft.eissn=2044-5326&rft_id=info:doi/10.1557/s43578-022-00541-1&rft_dat=%3Cproquest_cross%3E2708280365%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c359t-576704f155ba7863c078ab334ba2e83ca8cadcc944f631dd0bb72a60eb5741f23%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2708280365&rft_id=info:pmid/&rfr_iscdi=true |