Loading…

Accurate measurement of thin film mechanical properties using nanoindentation

For decades, nanoindentation has been used for measuring mechanical properties of films with the widely used assumption that if the indentation depth does not exceed 10% of the film thickness, the substrate influence is negligible. The 10% rule was originally deduced for much thicker metallic films...

Full description

Saved in:
Bibliographic Details
Published in:Journal of materials research 2022-04, Vol.37 (7), p.1373-1389
Main Authors: Zak, S., Trost, C. O. W., Kreiml, P., Cordill, M. J.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c359t-576704f155ba7863c078ab334ba2e83ca8cadcc944f631dd0bb72a60eb5741f23
cites cdi_FETCH-LOGICAL-c359t-576704f155ba7863c078ab334ba2e83ca8cadcc944f631dd0bb72a60eb5741f23
container_end_page 1389
container_issue 7
container_start_page 1373
container_title Journal of materials research
container_volume 37
creator Zak, S.
Trost, C. O. W.
Kreiml, P.
Cordill, M. J.
description For decades, nanoindentation has been used for measuring mechanical properties of films with the widely used assumption that if the indentation depth does not exceed 10% of the film thickness, the substrate influence is negligible. The 10% rule was originally deduced for much thicker metallic films on steel substrates and involved only the hardness measurement. Thus, the boundaries of usability for measuring thin film elastic modulus may differ. Two known material systems of Mo and MoTa thin films on Si substrates are examined with nanoindentation and numerical modeling to show the limitations in measuring elastic moduli. An assessment of the hardness and elastic modulus as a function of contact depth and accurate modeling of the film/substrate deformation confirms the 10% rule for hardness measurements. For elastic modulus, the indentation depths should be much smaller. Results provide a recommended testing protocol for accurate assessment of thin film elastic modulus using nanoindentation. Graphical abstract
doi_str_mv 10.1557/s43578-022-00541-1
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2708280365</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2708280365</sourcerecordid><originalsourceid>FETCH-LOGICAL-c359t-576704f155ba7863c078ab334ba2e83ca8cadcc944f631dd0bb72a60eb5741f23</originalsourceid><addsrcrecordid>eNp9kD1PwzAQhi0EEqXwB5giMRvOX7E7VhVfUhELzJbjOK2rxCm2M_DvMQSJjemGe5_3Tg9C1wRuiRDyLnEmpMJAKQYQnGByghYUOMeC0foULUApjumK8HN0kdIBgAiQfIFe1tZO0WRXDc6kKbrBhVyNXZX3PlSd74eysHsTvDV9dYzj0cXsXaqm5MOuCiaMPrSFMdmP4RKddaZP7up3LtH7w_3b5glvXx-fN-sttkysMhaylsC78nljpKqZBalMwxhvDHWKWaOsaa1dcd7VjLQtNI2kpgbXCMlJR9kS3cy95aGPyaWsD-MUQzmpqQRFFbBalBSdUzaOKUXX6WP0g4mfmoD-1qZnbbpo0z_aNCkQm6FUwmHn4l_1P9QXejhw3w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2708280365</pqid></control><display><type>article</type><title>Accurate measurement of thin film mechanical properties using nanoindentation</title><source>Springer Link</source><creator>Zak, S. ; Trost, C. O. W. ; Kreiml, P. ; Cordill, M. J.</creator><creatorcontrib>Zak, S. ; Trost, C. O. W. ; Kreiml, P. ; Cordill, M. J.</creatorcontrib><description>For decades, nanoindentation has been used for measuring mechanical properties of films with the widely used assumption that if the indentation depth does not exceed 10% of the film thickness, the substrate influence is negligible. The 10% rule was originally deduced for much thicker metallic films on steel substrates and involved only the hardness measurement. Thus, the boundaries of usability for measuring thin film elastic modulus may differ. Two known material systems of Mo and MoTa thin films on Si substrates are examined with nanoindentation and numerical modeling to show the limitations in measuring elastic moduli. An assessment of the hardness and elastic modulus as a function of contact depth and accurate modeling of the film/substrate deformation confirms the 10% rule for hardness measurements. For elastic modulus, the indentation depths should be much smaller. Results provide a recommended testing protocol for accurate assessment of thin film elastic modulus using nanoindentation. Graphical abstract</description><identifier>ISSN: 0884-2914</identifier><identifier>EISSN: 2044-5326</identifier><identifier>DOI: 10.1557/s43578-022-00541-1</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Applied and Technical Physics ; Biomaterials ; Chemistry and Materials Science ; Elastic deformation ; Elastic limit ; Film thickness ; Hardness measurement ; Inorganic Chemistry ; Materials Engineering ; Materials research ; Materials Science ; Mechanical properties ; Modulus of elasticity ; Nanoindentation ; Nanotechnology ; Silicon substrates ; Thin films</subject><ispartof>Journal of materials research, 2022-04, Vol.37 (7), p.1373-1389</ispartof><rights>The Author(s) 2022</rights><rights>The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c359t-576704f155ba7863c078ab334ba2e83ca8cadcc944f631dd0bb72a60eb5741f23</citedby><cites>FETCH-LOGICAL-c359t-576704f155ba7863c078ab334ba2e83ca8cadcc944f631dd0bb72a60eb5741f23</cites><orcidid>0000-0002-8337-5267 ; 0000-0003-1329-8072 ; 0000-0002-7570-688X ; 0000-0003-1142-8312</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids></links><search><creatorcontrib>Zak, S.</creatorcontrib><creatorcontrib>Trost, C. O. W.</creatorcontrib><creatorcontrib>Kreiml, P.</creatorcontrib><creatorcontrib>Cordill, M. J.</creatorcontrib><title>Accurate measurement of thin film mechanical properties using nanoindentation</title><title>Journal of materials research</title><addtitle>Journal of Materials Research</addtitle><description>For decades, nanoindentation has been used for measuring mechanical properties of films with the widely used assumption that if the indentation depth does not exceed 10% of the film thickness, the substrate influence is negligible. The 10% rule was originally deduced for much thicker metallic films on steel substrates and involved only the hardness measurement. Thus, the boundaries of usability for measuring thin film elastic modulus may differ. Two known material systems of Mo and MoTa thin films on Si substrates are examined with nanoindentation and numerical modeling to show the limitations in measuring elastic moduli. An assessment of the hardness and elastic modulus as a function of contact depth and accurate modeling of the film/substrate deformation confirms the 10% rule for hardness measurements. For elastic modulus, the indentation depths should be much smaller. Results provide a recommended testing protocol for accurate assessment of thin film elastic modulus using nanoindentation. Graphical abstract</description><subject>Applied and Technical Physics</subject><subject>Biomaterials</subject><subject>Chemistry and Materials Science</subject><subject>Elastic deformation</subject><subject>Elastic limit</subject><subject>Film thickness</subject><subject>Hardness measurement</subject><subject>Inorganic Chemistry</subject><subject>Materials Engineering</subject><subject>Materials research</subject><subject>Materials Science</subject><subject>Mechanical properties</subject><subject>Modulus of elasticity</subject><subject>Nanoindentation</subject><subject>Nanotechnology</subject><subject>Silicon substrates</subject><subject>Thin films</subject><issn>0884-2914</issn><issn>2044-5326</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kD1PwzAQhi0EEqXwB5giMRvOX7E7VhVfUhELzJbjOK2rxCm2M_DvMQSJjemGe5_3Tg9C1wRuiRDyLnEmpMJAKQYQnGByghYUOMeC0foULUApjumK8HN0kdIBgAiQfIFe1tZO0WRXDc6kKbrBhVyNXZX3PlSd74eysHsTvDV9dYzj0cXsXaqm5MOuCiaMPrSFMdmP4RKddaZP7up3LtH7w_3b5glvXx-fN-sttkysMhaylsC78nljpKqZBalMwxhvDHWKWaOsaa1dcd7VjLQtNI2kpgbXCMlJR9kS3cy95aGPyaWsD-MUQzmpqQRFFbBalBSdUzaOKUXX6WP0g4mfmoD-1qZnbbpo0z_aNCkQm6FUwmHn4l_1P9QXejhw3w</recordid><startdate>20220414</startdate><enddate>20220414</enddate><creator>Zak, S.</creator><creator>Trost, C. O. W.</creator><creator>Kreiml, P.</creator><creator>Cordill, M. J.</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><orcidid>https://orcid.org/0000-0002-8337-5267</orcidid><orcidid>https://orcid.org/0000-0003-1329-8072</orcidid><orcidid>https://orcid.org/0000-0002-7570-688X</orcidid><orcidid>https://orcid.org/0000-0003-1142-8312</orcidid></search><sort><creationdate>20220414</creationdate><title>Accurate measurement of thin film mechanical properties using nanoindentation</title><author>Zak, S. ; Trost, C. O. W. ; Kreiml, P. ; Cordill, M. J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c359t-576704f155ba7863c078ab334ba2e83ca8cadcc944f631dd0bb72a60eb5741f23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Applied and Technical Physics</topic><topic>Biomaterials</topic><topic>Chemistry and Materials Science</topic><topic>Elastic deformation</topic><topic>Elastic limit</topic><topic>Film thickness</topic><topic>Hardness measurement</topic><topic>Inorganic Chemistry</topic><topic>Materials Engineering</topic><topic>Materials research</topic><topic>Materials Science</topic><topic>Mechanical properties</topic><topic>Modulus of elasticity</topic><topic>Nanoindentation</topic><topic>Nanotechnology</topic><topic>Silicon substrates</topic><topic>Thin films</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zak, S.</creatorcontrib><creatorcontrib>Trost, C. O. W.</creatorcontrib><creatorcontrib>Kreiml, P.</creatorcontrib><creatorcontrib>Cordill, M. J.</creatorcontrib><collection>SpringerOpen</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Journal of materials research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zak, S.</au><au>Trost, C. O. W.</au><au>Kreiml, P.</au><au>Cordill, M. J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Accurate measurement of thin film mechanical properties using nanoindentation</atitle><jtitle>Journal of materials research</jtitle><stitle>Journal of Materials Research</stitle><date>2022-04-14</date><risdate>2022</risdate><volume>37</volume><issue>7</issue><spage>1373</spage><epage>1389</epage><pages>1373-1389</pages><issn>0884-2914</issn><eissn>2044-5326</eissn><abstract>For decades, nanoindentation has been used for measuring mechanical properties of films with the widely used assumption that if the indentation depth does not exceed 10% of the film thickness, the substrate influence is negligible. The 10% rule was originally deduced for much thicker metallic films on steel substrates and involved only the hardness measurement. Thus, the boundaries of usability for measuring thin film elastic modulus may differ. Two known material systems of Mo and MoTa thin films on Si substrates are examined with nanoindentation and numerical modeling to show the limitations in measuring elastic moduli. An assessment of the hardness and elastic modulus as a function of contact depth and accurate modeling of the film/substrate deformation confirms the 10% rule for hardness measurements. For elastic modulus, the indentation depths should be much smaller. Results provide a recommended testing protocol for accurate assessment of thin film elastic modulus using nanoindentation. Graphical abstract</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1557/s43578-022-00541-1</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0002-8337-5267</orcidid><orcidid>https://orcid.org/0000-0003-1329-8072</orcidid><orcidid>https://orcid.org/0000-0002-7570-688X</orcidid><orcidid>https://orcid.org/0000-0003-1142-8312</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0884-2914
ispartof Journal of materials research, 2022-04, Vol.37 (7), p.1373-1389
issn 0884-2914
2044-5326
language eng
recordid cdi_proquest_journals_2708280365
source Springer Link
subjects Applied and Technical Physics
Biomaterials
Chemistry and Materials Science
Elastic deformation
Elastic limit
Film thickness
Hardness measurement
Inorganic Chemistry
Materials Engineering
Materials research
Materials Science
Mechanical properties
Modulus of elasticity
Nanoindentation
Nanotechnology
Silicon substrates
Thin films
title Accurate measurement of thin film mechanical properties using nanoindentation
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T10%3A46%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Accurate%20measurement%20of%20thin%20film%20mechanical%20properties%20using%20nanoindentation&rft.jtitle=Journal%20of%20materials%20research&rft.au=Zak,%20S.&rft.date=2022-04-14&rft.volume=37&rft.issue=7&rft.spage=1373&rft.epage=1389&rft.pages=1373-1389&rft.issn=0884-2914&rft.eissn=2044-5326&rft_id=info:doi/10.1557/s43578-022-00541-1&rft_dat=%3Cproquest_cross%3E2708280365%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c359t-576704f155ba7863c078ab334ba2e83ca8cadcc944f631dd0bb72a60eb5741f23%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2708280365&rft_id=info:pmid/&rfr_iscdi=true