Loading…

Growth of nanoporous high-entropy oxide thin films by pulsed laser deposition

High-entropy oxides (HEO) with entropic stabilization and compositional flexibility have great potential application in batteries and catalysis. In this work, HEO thin films were synthesized by pulsed laser deposition (PLD) from a rock-salt (Co 0.2 Ni 0.2 Cu 0.2 Mg 0.2 Zn 0.2 )O ceramic target. The...

Full description

Saved in:
Bibliographic Details
Published in:Journal of materials research 2022-01, Vol.37 (1), p.124-135
Main Authors: Guo, Huiming, Wang, Xin, Dupuy, Alexander D., Schoenung, Julie M., Bowman, William J.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c363t-23c8f7a2831bd7be386d48d358587546a2036762029e4b5e210c0a956c8c7d943
cites cdi_FETCH-LOGICAL-c363t-23c8f7a2831bd7be386d48d358587546a2036762029e4b5e210c0a956c8c7d943
container_end_page 135
container_issue 1
container_start_page 124
container_title Journal of materials research
container_volume 37
creator Guo, Huiming
Wang, Xin
Dupuy, Alexander D.
Schoenung, Julie M.
Bowman, William J.
description High-entropy oxides (HEO) with entropic stabilization and compositional flexibility have great potential application in batteries and catalysis. In this work, HEO thin films were synthesized by pulsed laser deposition (PLD) from a rock-salt (Co 0.2 Ni 0.2 Cu 0.2 Mg 0.2 Zn 0.2 )O ceramic target. The films exhibited the target’s crystal structure, were chemically homogeneous, and possessed a three-dimensional (3D) island morphology with connected randomly shaped nanopores. The effects of varying PLD laser fluence on crystal structure and morphology were explored systematically. Increasing fluence facilitates film crystallization at low substrate temperature (300 °C) and increases film thickness (60–140 nm). The lateral size of columnar grains, islands (19 nm to 35 nm in average size), and nanopores (9.3 nm to 20 nm in average size) increased with increasing fluence (3.4 to 7.0 J/cm 2 ), explained by increased kinetic energy of adatoms and competition between deposition and diffusion. Additionally, increasing fluence reduces the number of undesirable droplets observed on the film surface. The nanoporous HEO films can potentially serve as electrochemical reaction interfaces with tunable surface area and excellent phase stability. Graphical abstract
doi_str_mv 10.1557/s43578-021-00473-2
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2708280411</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2708280411</sourcerecordid><originalsourceid>FETCH-LOGICAL-c363t-23c8f7a2831bd7be386d48d358587546a2036762029e4b5e210c0a956c8c7d943</originalsourceid><addsrcrecordid>eNp9kEtLxDAUhYMoOI7-AVcB19Gbm6RJlzL4ghE3ug59pNMMM01NWnT-vdUK7lzdxTnfufARcsnhmiulb5IUShsGyBmA1ILhEVkgSMmUwOyYLMAYyTDn8pScpbQF4Aq0XJDnhxg-hpaGhnZFF_oQw5ho6zctc90QQ3-g4dPXjg6t72jjd_tEywPtx11yNd0VyUVauz4kP_jQnZOTppiSi9-7JG_3d6-rR7Z-eXha3a5ZJTIxMBSVaXSBRvCy1qUTJqulqYUyymglswJBZDpDwNzJUjnkUEGRq6wyla5zKZbkat7tY3gfXRrsNoyxm15a1GDQgOR8auHcqmJIKbrG9tHvi3iwHOy3Njtrs5M2-6PN4gSJGUpTudu4-Df9D_UFXxNvVQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2708280411</pqid></control><display><type>article</type><title>Growth of nanoporous high-entropy oxide thin films by pulsed laser deposition</title><source>Springer Link</source><creator>Guo, Huiming ; Wang, Xin ; Dupuy, Alexander D. ; Schoenung, Julie M. ; Bowman, William J.</creator><creatorcontrib>Guo, Huiming ; Wang, Xin ; Dupuy, Alexander D. ; Schoenung, Julie M. ; Bowman, William J.</creatorcontrib><description>High-entropy oxides (HEO) with entropic stabilization and compositional flexibility have great potential application in batteries and catalysis. In this work, HEO thin films were synthesized by pulsed laser deposition (PLD) from a rock-salt (Co 0.2 Ni 0.2 Cu 0.2 Mg 0.2 Zn 0.2 )O ceramic target. The films exhibited the target’s crystal structure, were chemically homogeneous, and possessed a three-dimensional (3D) island morphology with connected randomly shaped nanopores. The effects of varying PLD laser fluence on crystal structure and morphology were explored systematically. Increasing fluence facilitates film crystallization at low substrate temperature (300 °C) and increases film thickness (60–140 nm). The lateral size of columnar grains, islands (19 nm to 35 nm in average size), and nanopores (9.3 nm to 20 nm in average size) increased with increasing fluence (3.4 to 7.0 J/cm 2 ), explained by increased kinetic energy of adatoms and competition between deposition and diffusion. Additionally, increasing fluence reduces the number of undesirable droplets observed on the film surface. The nanoporous HEO films can potentially serve as electrochemical reaction interfaces with tunable surface area and excellent phase stability. Graphical abstract</description><identifier>ISSN: 0884-2914</identifier><identifier>EISSN: 2044-5326</identifier><identifier>DOI: 10.1557/s43578-021-00473-2</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Adatoms ; Applied and Technical Physics ; Biomaterials ; Chemistry and Materials Science ; Crystal structure ; Crystallization ; Entropy ; Film thickness ; Fluence ; Inorganic Chemistry ; Interface stability ; Kinetic energy ; Lasers ; Materials Engineering ; Materials research ; Materials Science ; Morphology ; Nanotechnology ; Phase stability ; Pulsed laser deposition ; Pulsed lasers ; Substrates ; Surface stability ; Thin films</subject><ispartof>Journal of materials research, 2022-01, Vol.37 (1), p.124-135</ispartof><rights>The Author(s) 2022</rights><rights>The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c363t-23c8f7a2831bd7be386d48d358587546a2036762029e4b5e210c0a956c8c7d943</citedby><cites>FETCH-LOGICAL-c363t-23c8f7a2831bd7be386d48d358587546a2036762029e4b5e210c0a956c8c7d943</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Guo, Huiming</creatorcontrib><creatorcontrib>Wang, Xin</creatorcontrib><creatorcontrib>Dupuy, Alexander D.</creatorcontrib><creatorcontrib>Schoenung, Julie M.</creatorcontrib><creatorcontrib>Bowman, William J.</creatorcontrib><title>Growth of nanoporous high-entropy oxide thin films by pulsed laser deposition</title><title>Journal of materials research</title><addtitle>Journal of Materials Research</addtitle><description>High-entropy oxides (HEO) with entropic stabilization and compositional flexibility have great potential application in batteries and catalysis. In this work, HEO thin films were synthesized by pulsed laser deposition (PLD) from a rock-salt (Co 0.2 Ni 0.2 Cu 0.2 Mg 0.2 Zn 0.2 )O ceramic target. The films exhibited the target’s crystal structure, were chemically homogeneous, and possessed a three-dimensional (3D) island morphology with connected randomly shaped nanopores. The effects of varying PLD laser fluence on crystal structure and morphology were explored systematically. Increasing fluence facilitates film crystallization at low substrate temperature (300 °C) and increases film thickness (60–140 nm). The lateral size of columnar grains, islands (19 nm to 35 nm in average size), and nanopores (9.3 nm to 20 nm in average size) increased with increasing fluence (3.4 to 7.0 J/cm 2 ), explained by increased kinetic energy of adatoms and competition between deposition and diffusion. Additionally, increasing fluence reduces the number of undesirable droplets observed on the film surface. The nanoporous HEO films can potentially serve as electrochemical reaction interfaces with tunable surface area and excellent phase stability. Graphical abstract</description><subject>Adatoms</subject><subject>Applied and Technical Physics</subject><subject>Biomaterials</subject><subject>Chemistry and Materials Science</subject><subject>Crystal structure</subject><subject>Crystallization</subject><subject>Entropy</subject><subject>Film thickness</subject><subject>Fluence</subject><subject>Inorganic Chemistry</subject><subject>Interface stability</subject><subject>Kinetic energy</subject><subject>Lasers</subject><subject>Materials Engineering</subject><subject>Materials research</subject><subject>Materials Science</subject><subject>Morphology</subject><subject>Nanotechnology</subject><subject>Phase stability</subject><subject>Pulsed laser deposition</subject><subject>Pulsed lasers</subject><subject>Substrates</subject><subject>Surface stability</subject><subject>Thin films</subject><issn>0884-2914</issn><issn>2044-5326</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kEtLxDAUhYMoOI7-AVcB19Gbm6RJlzL4ghE3ug59pNMMM01NWnT-vdUK7lzdxTnfufARcsnhmiulb5IUShsGyBmA1ILhEVkgSMmUwOyYLMAYyTDn8pScpbQF4Aq0XJDnhxg-hpaGhnZFF_oQw5ho6zctc90QQ3-g4dPXjg6t72jjd_tEywPtx11yNd0VyUVauz4kP_jQnZOTppiSi9-7JG_3d6-rR7Z-eXha3a5ZJTIxMBSVaXSBRvCy1qUTJqulqYUyymglswJBZDpDwNzJUjnkUEGRq6wyla5zKZbkat7tY3gfXRrsNoyxm15a1GDQgOR8auHcqmJIKbrG9tHvi3iwHOy3Njtrs5M2-6PN4gSJGUpTudu4-Df9D_UFXxNvVQ</recordid><startdate>20220114</startdate><enddate>20220114</enddate><creator>Guo, Huiming</creator><creator>Wang, Xin</creator><creator>Dupuy, Alexander D.</creator><creator>Schoenung, Julie M.</creator><creator>Bowman, William J.</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope></search><sort><creationdate>20220114</creationdate><title>Growth of nanoporous high-entropy oxide thin films by pulsed laser deposition</title><author>Guo, Huiming ; Wang, Xin ; Dupuy, Alexander D. ; Schoenung, Julie M. ; Bowman, William J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c363t-23c8f7a2831bd7be386d48d358587546a2036762029e4b5e210c0a956c8c7d943</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Adatoms</topic><topic>Applied and Technical Physics</topic><topic>Biomaterials</topic><topic>Chemistry and Materials Science</topic><topic>Crystal structure</topic><topic>Crystallization</topic><topic>Entropy</topic><topic>Film thickness</topic><topic>Fluence</topic><topic>Inorganic Chemistry</topic><topic>Interface stability</topic><topic>Kinetic energy</topic><topic>Lasers</topic><topic>Materials Engineering</topic><topic>Materials research</topic><topic>Materials Science</topic><topic>Morphology</topic><topic>Nanotechnology</topic><topic>Phase stability</topic><topic>Pulsed laser deposition</topic><topic>Pulsed lasers</topic><topic>Substrates</topic><topic>Surface stability</topic><topic>Thin films</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Guo, Huiming</creatorcontrib><creatorcontrib>Wang, Xin</creatorcontrib><creatorcontrib>Dupuy, Alexander D.</creatorcontrib><creatorcontrib>Schoenung, Julie M.</creatorcontrib><creatorcontrib>Bowman, William J.</creatorcontrib><collection>SpringerOpen (Open Access)</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Journal of materials research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Guo, Huiming</au><au>Wang, Xin</au><au>Dupuy, Alexander D.</au><au>Schoenung, Julie M.</au><au>Bowman, William J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Growth of nanoporous high-entropy oxide thin films by pulsed laser deposition</atitle><jtitle>Journal of materials research</jtitle><stitle>Journal of Materials Research</stitle><date>2022-01-14</date><risdate>2022</risdate><volume>37</volume><issue>1</issue><spage>124</spage><epage>135</epage><pages>124-135</pages><issn>0884-2914</issn><eissn>2044-5326</eissn><abstract>High-entropy oxides (HEO) with entropic stabilization and compositional flexibility have great potential application in batteries and catalysis. In this work, HEO thin films were synthesized by pulsed laser deposition (PLD) from a rock-salt (Co 0.2 Ni 0.2 Cu 0.2 Mg 0.2 Zn 0.2 )O ceramic target. The films exhibited the target’s crystal structure, were chemically homogeneous, and possessed a three-dimensional (3D) island morphology with connected randomly shaped nanopores. The effects of varying PLD laser fluence on crystal structure and morphology were explored systematically. Increasing fluence facilitates film crystallization at low substrate temperature (300 °C) and increases film thickness (60–140 nm). The lateral size of columnar grains, islands (19 nm to 35 nm in average size), and nanopores (9.3 nm to 20 nm in average size) increased with increasing fluence (3.4 to 7.0 J/cm 2 ), explained by increased kinetic energy of adatoms and competition between deposition and diffusion. Additionally, increasing fluence reduces the number of undesirable droplets observed on the film surface. The nanoporous HEO films can potentially serve as electrochemical reaction interfaces with tunable surface area and excellent phase stability. Graphical abstract</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1557/s43578-021-00473-2</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0884-2914
ispartof Journal of materials research, 2022-01, Vol.37 (1), p.124-135
issn 0884-2914
2044-5326
language eng
recordid cdi_proquest_journals_2708280411
source Springer Link
subjects Adatoms
Applied and Technical Physics
Biomaterials
Chemistry and Materials Science
Crystal structure
Crystallization
Entropy
Film thickness
Fluence
Inorganic Chemistry
Interface stability
Kinetic energy
Lasers
Materials Engineering
Materials research
Materials Science
Morphology
Nanotechnology
Phase stability
Pulsed laser deposition
Pulsed lasers
Substrates
Surface stability
Thin films
title Growth of nanoporous high-entropy oxide thin films by pulsed laser deposition
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T19%3A54%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Growth%20of%20nanoporous%20high-entropy%20oxide%20thin%20films%20by%20pulsed%20laser%20deposition&rft.jtitle=Journal%20of%20materials%20research&rft.au=Guo,%20Huiming&rft.date=2022-01-14&rft.volume=37&rft.issue=1&rft.spage=124&rft.epage=135&rft.pages=124-135&rft.issn=0884-2914&rft.eissn=2044-5326&rft_id=info:doi/10.1557/s43578-021-00473-2&rft_dat=%3Cproquest_cross%3E2708280411%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c363t-23c8f7a2831bd7be386d48d358587546a2036762029e4b5e210c0a956c8c7d943%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2708280411&rft_id=info:pmid/&rfr_iscdi=true