Loading…
Growth of nanoporous high-entropy oxide thin films by pulsed laser deposition
High-entropy oxides (HEO) with entropic stabilization and compositional flexibility have great potential application in batteries and catalysis. In this work, HEO thin films were synthesized by pulsed laser deposition (PLD) from a rock-salt (Co 0.2 Ni 0.2 Cu 0.2 Mg 0.2 Zn 0.2 )O ceramic target. The...
Saved in:
Published in: | Journal of materials research 2022-01, Vol.37 (1), p.124-135 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c363t-23c8f7a2831bd7be386d48d358587546a2036762029e4b5e210c0a956c8c7d943 |
---|---|
cites | cdi_FETCH-LOGICAL-c363t-23c8f7a2831bd7be386d48d358587546a2036762029e4b5e210c0a956c8c7d943 |
container_end_page | 135 |
container_issue | 1 |
container_start_page | 124 |
container_title | Journal of materials research |
container_volume | 37 |
creator | Guo, Huiming Wang, Xin Dupuy, Alexander D. Schoenung, Julie M. Bowman, William J. |
description | High-entropy oxides (HEO) with entropic stabilization and compositional flexibility have great potential application in batteries and catalysis. In this work, HEO thin films were synthesized by pulsed laser deposition (PLD) from a rock-salt (Co
0.2
Ni
0.2
Cu
0.2
Mg
0.2
Zn
0.2
)O ceramic target. The films exhibited the target’s crystal structure, were chemically homogeneous, and possessed a three-dimensional (3D) island morphology with connected randomly shaped nanopores. The effects of varying PLD laser fluence on crystal structure and morphology were explored systematically. Increasing fluence facilitates film crystallization at low substrate temperature (300 °C) and increases film thickness (60–140 nm). The lateral size of columnar grains, islands (19 nm to 35 nm in average size), and nanopores (9.3 nm to 20 nm in average size) increased with increasing fluence (3.4 to 7.0 J/cm
2
), explained by increased kinetic energy of adatoms and competition between deposition and diffusion. Additionally, increasing fluence reduces the number of undesirable droplets observed on the film surface. The nanoporous HEO films can potentially serve as electrochemical reaction interfaces with tunable surface area and excellent phase stability.
Graphical abstract |
doi_str_mv | 10.1557/s43578-021-00473-2 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2708280411</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2708280411</sourcerecordid><originalsourceid>FETCH-LOGICAL-c363t-23c8f7a2831bd7be386d48d358587546a2036762029e4b5e210c0a956c8c7d943</originalsourceid><addsrcrecordid>eNp9kEtLxDAUhYMoOI7-AVcB19Gbm6RJlzL4ghE3ug59pNMMM01NWnT-vdUK7lzdxTnfufARcsnhmiulb5IUShsGyBmA1ILhEVkgSMmUwOyYLMAYyTDn8pScpbQF4Aq0XJDnhxg-hpaGhnZFF_oQw5ho6zctc90QQ3-g4dPXjg6t72jjd_tEywPtx11yNd0VyUVauz4kP_jQnZOTppiSi9-7JG_3d6-rR7Z-eXha3a5ZJTIxMBSVaXSBRvCy1qUTJqulqYUyymglswJBZDpDwNzJUjnkUEGRq6wyla5zKZbkat7tY3gfXRrsNoyxm15a1GDQgOR8auHcqmJIKbrG9tHvi3iwHOy3Njtrs5M2-6PN4gSJGUpTudu4-Df9D_UFXxNvVQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2708280411</pqid></control><display><type>article</type><title>Growth of nanoporous high-entropy oxide thin films by pulsed laser deposition</title><source>Springer Link</source><creator>Guo, Huiming ; Wang, Xin ; Dupuy, Alexander D. ; Schoenung, Julie M. ; Bowman, William J.</creator><creatorcontrib>Guo, Huiming ; Wang, Xin ; Dupuy, Alexander D. ; Schoenung, Julie M. ; Bowman, William J.</creatorcontrib><description>High-entropy oxides (HEO) with entropic stabilization and compositional flexibility have great potential application in batteries and catalysis. In this work, HEO thin films were synthesized by pulsed laser deposition (PLD) from a rock-salt (Co
0.2
Ni
0.2
Cu
0.2
Mg
0.2
Zn
0.2
)O ceramic target. The films exhibited the target’s crystal structure, were chemically homogeneous, and possessed a three-dimensional (3D) island morphology with connected randomly shaped nanopores. The effects of varying PLD laser fluence on crystal structure and morphology were explored systematically. Increasing fluence facilitates film crystallization at low substrate temperature (300 °C) and increases film thickness (60–140 nm). The lateral size of columnar grains, islands (19 nm to 35 nm in average size), and nanopores (9.3 nm to 20 nm in average size) increased with increasing fluence (3.4 to 7.0 J/cm
2
), explained by increased kinetic energy of adatoms and competition between deposition and diffusion. Additionally, increasing fluence reduces the number of undesirable droplets observed on the film surface. The nanoporous HEO films can potentially serve as electrochemical reaction interfaces with tunable surface area and excellent phase stability.
Graphical abstract</description><identifier>ISSN: 0884-2914</identifier><identifier>EISSN: 2044-5326</identifier><identifier>DOI: 10.1557/s43578-021-00473-2</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Adatoms ; Applied and Technical Physics ; Biomaterials ; Chemistry and Materials Science ; Crystal structure ; Crystallization ; Entropy ; Film thickness ; Fluence ; Inorganic Chemistry ; Interface stability ; Kinetic energy ; Lasers ; Materials Engineering ; Materials research ; Materials Science ; Morphology ; Nanotechnology ; Phase stability ; Pulsed laser deposition ; Pulsed lasers ; Substrates ; Surface stability ; Thin films</subject><ispartof>Journal of materials research, 2022-01, Vol.37 (1), p.124-135</ispartof><rights>The Author(s) 2022</rights><rights>The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c363t-23c8f7a2831bd7be386d48d358587546a2036762029e4b5e210c0a956c8c7d943</citedby><cites>FETCH-LOGICAL-c363t-23c8f7a2831bd7be386d48d358587546a2036762029e4b5e210c0a956c8c7d943</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Guo, Huiming</creatorcontrib><creatorcontrib>Wang, Xin</creatorcontrib><creatorcontrib>Dupuy, Alexander D.</creatorcontrib><creatorcontrib>Schoenung, Julie M.</creatorcontrib><creatorcontrib>Bowman, William J.</creatorcontrib><title>Growth of nanoporous high-entropy oxide thin films by pulsed laser deposition</title><title>Journal of materials research</title><addtitle>Journal of Materials Research</addtitle><description>High-entropy oxides (HEO) with entropic stabilization and compositional flexibility have great potential application in batteries and catalysis. In this work, HEO thin films were synthesized by pulsed laser deposition (PLD) from a rock-salt (Co
0.2
Ni
0.2
Cu
0.2
Mg
0.2
Zn
0.2
)O ceramic target. The films exhibited the target’s crystal structure, were chemically homogeneous, and possessed a three-dimensional (3D) island morphology with connected randomly shaped nanopores. The effects of varying PLD laser fluence on crystal structure and morphology were explored systematically. Increasing fluence facilitates film crystallization at low substrate temperature (300 °C) and increases film thickness (60–140 nm). The lateral size of columnar grains, islands (19 nm to 35 nm in average size), and nanopores (9.3 nm to 20 nm in average size) increased with increasing fluence (3.4 to 7.0 J/cm
2
), explained by increased kinetic energy of adatoms and competition between deposition and diffusion. Additionally, increasing fluence reduces the number of undesirable droplets observed on the film surface. The nanoporous HEO films can potentially serve as electrochemical reaction interfaces with tunable surface area and excellent phase stability.
Graphical abstract</description><subject>Adatoms</subject><subject>Applied and Technical Physics</subject><subject>Biomaterials</subject><subject>Chemistry and Materials Science</subject><subject>Crystal structure</subject><subject>Crystallization</subject><subject>Entropy</subject><subject>Film thickness</subject><subject>Fluence</subject><subject>Inorganic Chemistry</subject><subject>Interface stability</subject><subject>Kinetic energy</subject><subject>Lasers</subject><subject>Materials Engineering</subject><subject>Materials research</subject><subject>Materials Science</subject><subject>Morphology</subject><subject>Nanotechnology</subject><subject>Phase stability</subject><subject>Pulsed laser deposition</subject><subject>Pulsed lasers</subject><subject>Substrates</subject><subject>Surface stability</subject><subject>Thin films</subject><issn>0884-2914</issn><issn>2044-5326</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kEtLxDAUhYMoOI7-AVcB19Gbm6RJlzL4ghE3ug59pNMMM01NWnT-vdUK7lzdxTnfufARcsnhmiulb5IUShsGyBmA1ILhEVkgSMmUwOyYLMAYyTDn8pScpbQF4Aq0XJDnhxg-hpaGhnZFF_oQw5ho6zctc90QQ3-g4dPXjg6t72jjd_tEywPtx11yNd0VyUVauz4kP_jQnZOTppiSi9-7JG_3d6-rR7Z-eXha3a5ZJTIxMBSVaXSBRvCy1qUTJqulqYUyymglswJBZDpDwNzJUjnkUEGRq6wyla5zKZbkat7tY3gfXRrsNoyxm15a1GDQgOR8auHcqmJIKbrG9tHvi3iwHOy3Njtrs5M2-6PN4gSJGUpTudu4-Df9D_UFXxNvVQ</recordid><startdate>20220114</startdate><enddate>20220114</enddate><creator>Guo, Huiming</creator><creator>Wang, Xin</creator><creator>Dupuy, Alexander D.</creator><creator>Schoenung, Julie M.</creator><creator>Bowman, William J.</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope></search><sort><creationdate>20220114</creationdate><title>Growth of nanoporous high-entropy oxide thin films by pulsed laser deposition</title><author>Guo, Huiming ; Wang, Xin ; Dupuy, Alexander D. ; Schoenung, Julie M. ; Bowman, William J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c363t-23c8f7a2831bd7be386d48d358587546a2036762029e4b5e210c0a956c8c7d943</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Adatoms</topic><topic>Applied and Technical Physics</topic><topic>Biomaterials</topic><topic>Chemistry and Materials Science</topic><topic>Crystal structure</topic><topic>Crystallization</topic><topic>Entropy</topic><topic>Film thickness</topic><topic>Fluence</topic><topic>Inorganic Chemistry</topic><topic>Interface stability</topic><topic>Kinetic energy</topic><topic>Lasers</topic><topic>Materials Engineering</topic><topic>Materials research</topic><topic>Materials Science</topic><topic>Morphology</topic><topic>Nanotechnology</topic><topic>Phase stability</topic><topic>Pulsed laser deposition</topic><topic>Pulsed lasers</topic><topic>Substrates</topic><topic>Surface stability</topic><topic>Thin films</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Guo, Huiming</creatorcontrib><creatorcontrib>Wang, Xin</creatorcontrib><creatorcontrib>Dupuy, Alexander D.</creatorcontrib><creatorcontrib>Schoenung, Julie M.</creatorcontrib><creatorcontrib>Bowman, William J.</creatorcontrib><collection>SpringerOpen (Open Access)</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Journal of materials research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Guo, Huiming</au><au>Wang, Xin</au><au>Dupuy, Alexander D.</au><au>Schoenung, Julie M.</au><au>Bowman, William J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Growth of nanoporous high-entropy oxide thin films by pulsed laser deposition</atitle><jtitle>Journal of materials research</jtitle><stitle>Journal of Materials Research</stitle><date>2022-01-14</date><risdate>2022</risdate><volume>37</volume><issue>1</issue><spage>124</spage><epage>135</epage><pages>124-135</pages><issn>0884-2914</issn><eissn>2044-5326</eissn><abstract>High-entropy oxides (HEO) with entropic stabilization and compositional flexibility have great potential application in batteries and catalysis. In this work, HEO thin films were synthesized by pulsed laser deposition (PLD) from a rock-salt (Co
0.2
Ni
0.2
Cu
0.2
Mg
0.2
Zn
0.2
)O ceramic target. The films exhibited the target’s crystal structure, were chemically homogeneous, and possessed a three-dimensional (3D) island morphology with connected randomly shaped nanopores. The effects of varying PLD laser fluence on crystal structure and morphology were explored systematically. Increasing fluence facilitates film crystallization at low substrate temperature (300 °C) and increases film thickness (60–140 nm). The lateral size of columnar grains, islands (19 nm to 35 nm in average size), and nanopores (9.3 nm to 20 nm in average size) increased with increasing fluence (3.4 to 7.0 J/cm
2
), explained by increased kinetic energy of adatoms and competition between deposition and diffusion. Additionally, increasing fluence reduces the number of undesirable droplets observed on the film surface. The nanoporous HEO films can potentially serve as electrochemical reaction interfaces with tunable surface area and excellent phase stability.
Graphical abstract</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1557/s43578-021-00473-2</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0884-2914 |
ispartof | Journal of materials research, 2022-01, Vol.37 (1), p.124-135 |
issn | 0884-2914 2044-5326 |
language | eng |
recordid | cdi_proquest_journals_2708280411 |
source | Springer Link |
subjects | Adatoms Applied and Technical Physics Biomaterials Chemistry and Materials Science Crystal structure Crystallization Entropy Film thickness Fluence Inorganic Chemistry Interface stability Kinetic energy Lasers Materials Engineering Materials research Materials Science Morphology Nanotechnology Phase stability Pulsed laser deposition Pulsed lasers Substrates Surface stability Thin films |
title | Growth of nanoporous high-entropy oxide thin films by pulsed laser deposition |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T19%3A54%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Growth%20of%20nanoporous%20high-entropy%20oxide%20thin%20films%20by%20pulsed%20laser%20deposition&rft.jtitle=Journal%20of%20materials%20research&rft.au=Guo,%20Huiming&rft.date=2022-01-14&rft.volume=37&rft.issue=1&rft.spage=124&rft.epage=135&rft.pages=124-135&rft.issn=0884-2914&rft.eissn=2044-5326&rft_id=info:doi/10.1557/s43578-021-00473-2&rft_dat=%3Cproquest_cross%3E2708280411%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c363t-23c8f7a2831bd7be386d48d358587546a2036762029e4b5e210c0a956c8c7d943%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2708280411&rft_id=info:pmid/&rfr_iscdi=true |