Loading…
Motion Planning for Multirotor Aerial Vehicles in Plan-based Control Paradigm: a Review
In general, optimal motion planning can be performed both locally and globally. In such a planning, the choice in favour of either local or global planning technique mainly depends on whether the environmental conditions are dynamic or static. Hence, the most adequate choice is to use local planning...
Saved in:
Published in: | arXiv.org 2023-01 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | In general, optimal motion planning can be performed both locally and globally. In such a planning, the choice in favour of either local or global planning technique mainly depends on whether the environmental conditions are dynamic or static. Hence, the most adequate choice is to use local planning or local planning alongside global planning. When designing optimal motion planning both local and global, the key metrics to bear in mind are execution time, asymptotic optimality, and quick reaction to dynamic obstacles. Such planning approaches can address the aforesaid target metrics more efficiently compared to other approaches such as path planning followed by smoothing. Thus, the foremost objective of this study is to analyse related literature in order to understand how the motion planning, especially trajectory planning, problem is formulated, when being applied for generating optimal trajectories in real-time for Multirotor Aerial Vehicles (MAVs), impacts the listed metrics. As a result of the research, the trajectory planning problem was broken down into a set of subproblems, and the lists of methods for addressing each of the problems were identified and described in detail. Subsequently, the most prominent results from 2010 to 2022 were summarized and presented in the form of a timeline. |
---|---|
ISSN: | 2331-8422 |