Loading…
3D Nanostructured Nickel Hydroxide as an Efficient Electrocatalyst for Oxygen Evolution Reaction
The exploration of high-efficiency and reliable non-precious metal electrocatalysts for overall water splitting is greatly vital and challenging for scientists to explore the physical structure effects with OER catalysts. Herein, we firstly developed three-dimensional ɑlpha-nickel hydroxide as an ad...
Saved in:
Published in: | Electrocatalysis 2022-11, Vol.13 (6), p.873-886 |
---|---|
Main Authors: | , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c249t-231dd08b71582c75f8ea3a942d500ec3fae8017ca7a2a6a5a69ddccd4b8ef7b3 |
---|---|
cites | cdi_FETCH-LOGICAL-c249t-231dd08b71582c75f8ea3a942d500ec3fae8017ca7a2a6a5a69ddccd4b8ef7b3 |
container_end_page | 886 |
container_issue | 6 |
container_start_page | 873 |
container_title | Electrocatalysis |
container_volume | 13 |
creator | Li, Tong Ma, Xinxia Wang, Daolei Wu, Jiang Zheng, Fasong Jin, Jiawen Wang, Qikun Hao, Liangsheng Li, Zhaojie Huang, Sijia |
description | The exploration of high-efficiency and reliable non-precious metal electrocatalysts for overall water splitting is greatly vital and challenging for scientists to explore the physical structure effects with OER catalysts. Herein, we firstly developed three-dimensional ɑlpha-nickel hydroxide as an advantageous electrocatalyst for OER by a simple solvothermal method. By controlling the solvent, two kinds of regular and one kind of irregular pure ɑlpha-nickel hydroxide were successfully synthesized. Two regular catalysts’ catalytic activity can be enhanced by the level of regularity increasing. Interestingly, with the increase of irregularity, compared with nanosphere-like Ni(OH)
2
, nanoparticle-sphere-like Ni(OH)
2
sample’s specific surface areas, the number of ion transport channels, and reaction kinetics performance also raise, which actually enhances catalytic activity. In a word, the most irregular Ni(OH)
2
-NPS has the best electrocatalytic activity (
η
= 250 mV) and the lowest Tafel slope (73.9 mV dec
−1
), and the outstanding constancy (8 h) at 1.48 V (vs. RHE) could be achieved, meanwhile, the benchmark RuO
2
(340 mV and 87.4 mV dec
−1
) is also inferior to Ni(OH)
2
-NPS. By comparing three Ni(OH)
2
samples, this work provides a new single transition metal system for about 3D materials and facilitates the development of highly efficient water oxidation catalysts.
Graphical Abstract |
doi_str_mv | 10.1007/s12678-022-00757-z |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2709044805</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2709044805</sourcerecordid><originalsourceid>FETCH-LOGICAL-c249t-231dd08b71582c75f8ea3a942d500ec3fae8017ca7a2a6a5a69ddccd4b8ef7b3</originalsourceid><addsrcrecordid>eNp9kFFLwzAUhYMoOOb-gE8Bn6tp0jTJo8zphLGB7D1mSTo6azOTVNb9ejM78M37cs-Fc86FD4DbHN3nCLGHkOOS8QxhnKWTsux4AUY5L3lGhSguzxpTLK7BJIQdSkMEQZyOwDt5gkvVuhB9p2PnrYHLWn_YBs57492hNhaqAFULZ1VV69q2Ec4aq6N3WkXV9CHCynm4OvRbm0zfruli7Vr4ZpU-iRtwVakm2Ml5j8H6ebaezrPF6uV1-rjINC5EzDDJjUF8w3LKsWa04lYRJQpsKEJWk0pZjnKmFVNYlYqqUhijtSk23FZsQ8bgbqjde_fV2RDlznW-TR8lZkigouCIJhceXNq7ELyt5N7Xn8r3MkfyxFIOLGViKX9ZymMKkSEUkrndWv9X_U_qB1OheSQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2709044805</pqid></control><display><type>article</type><title>3D Nanostructured Nickel Hydroxide as an Efficient Electrocatalyst for Oxygen Evolution Reaction</title><source>Springer Link</source><creator>Li, Tong ; Ma, Xinxia ; Wang, Daolei ; Wu, Jiang ; Zheng, Fasong ; Jin, Jiawen ; Wang, Qikun ; Hao, Liangsheng ; Li, Zhaojie ; Huang, Sijia</creator><creatorcontrib>Li, Tong ; Ma, Xinxia ; Wang, Daolei ; Wu, Jiang ; Zheng, Fasong ; Jin, Jiawen ; Wang, Qikun ; Hao, Liangsheng ; Li, Zhaojie ; Huang, Sijia</creatorcontrib><description>The exploration of high-efficiency and reliable non-precious metal electrocatalysts for overall water splitting is greatly vital and challenging for scientists to explore the physical structure effects with OER catalysts. Herein, we firstly developed three-dimensional ɑlpha-nickel hydroxide as an advantageous electrocatalyst for OER by a simple solvothermal method. By controlling the solvent, two kinds of regular and one kind of irregular pure ɑlpha-nickel hydroxide were successfully synthesized. Two regular catalysts’ catalytic activity can be enhanced by the level of regularity increasing. Interestingly, with the increase of irregularity, compared with nanosphere-like Ni(OH)
2
, nanoparticle-sphere-like Ni(OH)
2
sample’s specific surface areas, the number of ion transport channels, and reaction kinetics performance also raise, which actually enhances catalytic activity. In a word, the most irregular Ni(OH)
2
-NPS has the best electrocatalytic activity (
η
= 250 mV) and the lowest Tafel slope (73.9 mV dec
−1
), and the outstanding constancy (8 h) at 1.48 V (vs. RHE) could be achieved, meanwhile, the benchmark RuO
2
(340 mV and 87.4 mV dec
−1
) is also inferior to Ni(OH)
2
-NPS. By comparing three Ni(OH)
2
samples, this work provides a new single transition metal system for about 3D materials and facilitates the development of highly efficient water oxidation catalysts.
Graphical Abstract</description><identifier>ISSN: 1868-2529</identifier><identifier>EISSN: 1868-5994</identifier><identifier>DOI: 10.1007/s12678-022-00757-z</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Catalysis ; Catalysts ; Catalytic activity ; Chemical synthesis ; Chemistry ; Chemistry and Materials Science ; Electrocatalysts ; Electrochemistry ; Energy Systems ; Ion transport ; Nanoparticles ; Nanospheres ; Nickel ; Nickel compounds ; Original Research ; Oxidation ; Oxygen evolution reactions ; Physical Chemistry ; Reaction kinetics ; Transition metals ; Water splitting</subject><ispartof>Electrocatalysis, 2022-11, Vol.13 (6), p.873-886</ispartof><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022</rights><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c249t-231dd08b71582c75f8ea3a942d500ec3fae8017ca7a2a6a5a69ddccd4b8ef7b3</citedby><cites>FETCH-LOGICAL-c249t-231dd08b71582c75f8ea3a942d500ec3fae8017ca7a2a6a5a69ddccd4b8ef7b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids></links><search><creatorcontrib>Li, Tong</creatorcontrib><creatorcontrib>Ma, Xinxia</creatorcontrib><creatorcontrib>Wang, Daolei</creatorcontrib><creatorcontrib>Wu, Jiang</creatorcontrib><creatorcontrib>Zheng, Fasong</creatorcontrib><creatorcontrib>Jin, Jiawen</creatorcontrib><creatorcontrib>Wang, Qikun</creatorcontrib><creatorcontrib>Hao, Liangsheng</creatorcontrib><creatorcontrib>Li, Zhaojie</creatorcontrib><creatorcontrib>Huang, Sijia</creatorcontrib><title>3D Nanostructured Nickel Hydroxide as an Efficient Electrocatalyst for Oxygen Evolution Reaction</title><title>Electrocatalysis</title><addtitle>Electrocatalysis</addtitle><description>The exploration of high-efficiency and reliable non-precious metal electrocatalysts for overall water splitting is greatly vital and challenging for scientists to explore the physical structure effects with OER catalysts. Herein, we firstly developed three-dimensional ɑlpha-nickel hydroxide as an advantageous electrocatalyst for OER by a simple solvothermal method. By controlling the solvent, two kinds of regular and one kind of irregular pure ɑlpha-nickel hydroxide were successfully synthesized. Two regular catalysts’ catalytic activity can be enhanced by the level of regularity increasing. Interestingly, with the increase of irregularity, compared with nanosphere-like Ni(OH)
2
, nanoparticle-sphere-like Ni(OH)
2
sample’s specific surface areas, the number of ion transport channels, and reaction kinetics performance also raise, which actually enhances catalytic activity. In a word, the most irregular Ni(OH)
2
-NPS has the best electrocatalytic activity (
η
= 250 mV) and the lowest Tafel slope (73.9 mV dec
−1
), and the outstanding constancy (8 h) at 1.48 V (vs. RHE) could be achieved, meanwhile, the benchmark RuO
2
(340 mV and 87.4 mV dec
−1
) is also inferior to Ni(OH)
2
-NPS. By comparing three Ni(OH)
2
samples, this work provides a new single transition metal system for about 3D materials and facilitates the development of highly efficient water oxidation catalysts.
Graphical Abstract</description><subject>Catalysis</subject><subject>Catalysts</subject><subject>Catalytic activity</subject><subject>Chemical synthesis</subject><subject>Chemistry</subject><subject>Chemistry and Materials Science</subject><subject>Electrocatalysts</subject><subject>Electrochemistry</subject><subject>Energy Systems</subject><subject>Ion transport</subject><subject>Nanoparticles</subject><subject>Nanospheres</subject><subject>Nickel</subject><subject>Nickel compounds</subject><subject>Original Research</subject><subject>Oxidation</subject><subject>Oxygen evolution reactions</subject><subject>Physical Chemistry</subject><subject>Reaction kinetics</subject><subject>Transition metals</subject><subject>Water splitting</subject><issn>1868-2529</issn><issn>1868-5994</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kFFLwzAUhYMoOOb-gE8Bn6tp0jTJo8zphLGB7D1mSTo6azOTVNb9ejM78M37cs-Fc86FD4DbHN3nCLGHkOOS8QxhnKWTsux4AUY5L3lGhSguzxpTLK7BJIQdSkMEQZyOwDt5gkvVuhB9p2PnrYHLWn_YBs57492hNhaqAFULZ1VV69q2Ec4aq6N3WkXV9CHCynm4OvRbm0zfruli7Vr4ZpU-iRtwVakm2Ml5j8H6ebaezrPF6uV1-rjINC5EzDDJjUF8w3LKsWa04lYRJQpsKEJWk0pZjnKmFVNYlYqqUhijtSk23FZsQ8bgbqjde_fV2RDlznW-TR8lZkigouCIJhceXNq7ELyt5N7Xn8r3MkfyxFIOLGViKX9ZymMKkSEUkrndWv9X_U_qB1OheSQ</recordid><startdate>20221101</startdate><enddate>20221101</enddate><creator>Li, Tong</creator><creator>Ma, Xinxia</creator><creator>Wang, Daolei</creator><creator>Wu, Jiang</creator><creator>Zheng, Fasong</creator><creator>Jin, Jiawen</creator><creator>Wang, Qikun</creator><creator>Hao, Liangsheng</creator><creator>Li, Zhaojie</creator><creator>Huang, Sijia</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20221101</creationdate><title>3D Nanostructured Nickel Hydroxide as an Efficient Electrocatalyst for Oxygen Evolution Reaction</title><author>Li, Tong ; Ma, Xinxia ; Wang, Daolei ; Wu, Jiang ; Zheng, Fasong ; Jin, Jiawen ; Wang, Qikun ; Hao, Liangsheng ; Li, Zhaojie ; Huang, Sijia</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c249t-231dd08b71582c75f8ea3a942d500ec3fae8017ca7a2a6a5a69ddccd4b8ef7b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Catalysis</topic><topic>Catalysts</topic><topic>Catalytic activity</topic><topic>Chemical synthesis</topic><topic>Chemistry</topic><topic>Chemistry and Materials Science</topic><topic>Electrocatalysts</topic><topic>Electrochemistry</topic><topic>Energy Systems</topic><topic>Ion transport</topic><topic>Nanoparticles</topic><topic>Nanospheres</topic><topic>Nickel</topic><topic>Nickel compounds</topic><topic>Original Research</topic><topic>Oxidation</topic><topic>Oxygen evolution reactions</topic><topic>Physical Chemistry</topic><topic>Reaction kinetics</topic><topic>Transition metals</topic><topic>Water splitting</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Tong</creatorcontrib><creatorcontrib>Ma, Xinxia</creatorcontrib><creatorcontrib>Wang, Daolei</creatorcontrib><creatorcontrib>Wu, Jiang</creatorcontrib><creatorcontrib>Zheng, Fasong</creatorcontrib><creatorcontrib>Jin, Jiawen</creatorcontrib><creatorcontrib>Wang, Qikun</creatorcontrib><creatorcontrib>Hao, Liangsheng</creatorcontrib><creatorcontrib>Li, Zhaojie</creatorcontrib><creatorcontrib>Huang, Sijia</creatorcontrib><collection>CrossRef</collection><jtitle>Electrocatalysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Tong</au><au>Ma, Xinxia</au><au>Wang, Daolei</au><au>Wu, Jiang</au><au>Zheng, Fasong</au><au>Jin, Jiawen</au><au>Wang, Qikun</au><au>Hao, Liangsheng</au><au>Li, Zhaojie</au><au>Huang, Sijia</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>3D Nanostructured Nickel Hydroxide as an Efficient Electrocatalyst for Oxygen Evolution Reaction</atitle><jtitle>Electrocatalysis</jtitle><stitle>Electrocatalysis</stitle><date>2022-11-01</date><risdate>2022</risdate><volume>13</volume><issue>6</issue><spage>873</spage><epage>886</epage><pages>873-886</pages><issn>1868-2529</issn><eissn>1868-5994</eissn><abstract>The exploration of high-efficiency and reliable non-precious metal electrocatalysts for overall water splitting is greatly vital and challenging for scientists to explore the physical structure effects with OER catalysts. Herein, we firstly developed three-dimensional ɑlpha-nickel hydroxide as an advantageous electrocatalyst for OER by a simple solvothermal method. By controlling the solvent, two kinds of regular and one kind of irregular pure ɑlpha-nickel hydroxide were successfully synthesized. Two regular catalysts’ catalytic activity can be enhanced by the level of regularity increasing. Interestingly, with the increase of irregularity, compared with nanosphere-like Ni(OH)
2
, nanoparticle-sphere-like Ni(OH)
2
sample’s specific surface areas, the number of ion transport channels, and reaction kinetics performance also raise, which actually enhances catalytic activity. In a word, the most irregular Ni(OH)
2
-NPS has the best electrocatalytic activity (
η
= 250 mV) and the lowest Tafel slope (73.9 mV dec
−1
), and the outstanding constancy (8 h) at 1.48 V (vs. RHE) could be achieved, meanwhile, the benchmark RuO
2
(340 mV and 87.4 mV dec
−1
) is also inferior to Ni(OH)
2
-NPS. By comparing three Ni(OH)
2
samples, this work provides a new single transition metal system for about 3D materials and facilitates the development of highly efficient water oxidation catalysts.
Graphical Abstract</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s12678-022-00757-z</doi><tpages>14</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1868-2529 |
ispartof | Electrocatalysis, 2022-11, Vol.13 (6), p.873-886 |
issn | 1868-2529 1868-5994 |
language | eng |
recordid | cdi_proquest_journals_2709044805 |
source | Springer Link |
subjects | Catalysis Catalysts Catalytic activity Chemical synthesis Chemistry Chemistry and Materials Science Electrocatalysts Electrochemistry Energy Systems Ion transport Nanoparticles Nanospheres Nickel Nickel compounds Original Research Oxidation Oxygen evolution reactions Physical Chemistry Reaction kinetics Transition metals Water splitting |
title | 3D Nanostructured Nickel Hydroxide as an Efficient Electrocatalyst for Oxygen Evolution Reaction |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T13%3A25%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=3D%20Nanostructured%20Nickel%20Hydroxide%20as%20an%20Efficient%20Electrocatalyst%20for%20Oxygen%20Evolution%20Reaction&rft.jtitle=Electrocatalysis&rft.au=Li,%20Tong&rft.date=2022-11-01&rft.volume=13&rft.issue=6&rft.spage=873&rft.epage=886&rft.pages=873-886&rft.issn=1868-2529&rft.eissn=1868-5994&rft_id=info:doi/10.1007/s12678-022-00757-z&rft_dat=%3Cproquest_cross%3E2709044805%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c249t-231dd08b71582c75f8ea3a942d500ec3fae8017ca7a2a6a5a69ddccd4b8ef7b3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2709044805&rft_id=info:pmid/&rfr_iscdi=true |