Loading…

3D Nanostructured Nickel Hydroxide as an Efficient Electrocatalyst for Oxygen Evolution Reaction

The exploration of high-efficiency and reliable non-precious metal electrocatalysts for overall water splitting is greatly vital and challenging for scientists to explore the physical structure effects with OER catalysts. Herein, we firstly developed three-dimensional ɑlpha-nickel hydroxide as an ad...

Full description

Saved in:
Bibliographic Details
Published in:Electrocatalysis 2022-11, Vol.13 (6), p.873-886
Main Authors: Li, Tong, Ma, Xinxia, Wang, Daolei, Wu, Jiang, Zheng, Fasong, Jin, Jiawen, Wang, Qikun, Hao, Liangsheng, Li, Zhaojie, Huang, Sijia
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c249t-231dd08b71582c75f8ea3a942d500ec3fae8017ca7a2a6a5a69ddccd4b8ef7b3
cites cdi_FETCH-LOGICAL-c249t-231dd08b71582c75f8ea3a942d500ec3fae8017ca7a2a6a5a69ddccd4b8ef7b3
container_end_page 886
container_issue 6
container_start_page 873
container_title Electrocatalysis
container_volume 13
creator Li, Tong
Ma, Xinxia
Wang, Daolei
Wu, Jiang
Zheng, Fasong
Jin, Jiawen
Wang, Qikun
Hao, Liangsheng
Li, Zhaojie
Huang, Sijia
description The exploration of high-efficiency and reliable non-precious metal electrocatalysts for overall water splitting is greatly vital and challenging for scientists to explore the physical structure effects with OER catalysts. Herein, we firstly developed three-dimensional ɑlpha-nickel hydroxide as an advantageous electrocatalyst for OER by a simple solvothermal method. By controlling the solvent, two kinds of regular and one kind of irregular pure ɑlpha-nickel hydroxide were successfully synthesized. Two regular catalysts’ catalytic activity can be enhanced by the level of regularity increasing. Interestingly, with the increase of irregularity, compared with nanosphere-like Ni(OH) 2 , nanoparticle-sphere-like Ni(OH) 2 sample’s specific surface areas, the number of ion transport channels, and reaction kinetics performance also raise, which actually enhances catalytic activity. In a word, the most irregular Ni(OH) 2 -NPS has the best electrocatalytic activity ( η  = 250 mV) and the lowest Tafel slope (73.9 mV dec −1 ), and the outstanding constancy (8 h) at 1.48 V (vs. RHE) could be achieved, meanwhile, the benchmark RuO 2 (340 mV and 87.4 mV dec −1 ) is also inferior to Ni(OH) 2 -NPS. By comparing three Ni(OH) 2 samples, this work provides a new single transition metal system for about 3D materials and facilitates the development of highly efficient water oxidation catalysts. Graphical Abstract
doi_str_mv 10.1007/s12678-022-00757-z
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2709044805</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2709044805</sourcerecordid><originalsourceid>FETCH-LOGICAL-c249t-231dd08b71582c75f8ea3a942d500ec3fae8017ca7a2a6a5a69ddccd4b8ef7b3</originalsourceid><addsrcrecordid>eNp9kFFLwzAUhYMoOOb-gE8Bn6tp0jTJo8zphLGB7D1mSTo6azOTVNb9ejM78M37cs-Fc86FD4DbHN3nCLGHkOOS8QxhnKWTsux4AUY5L3lGhSguzxpTLK7BJIQdSkMEQZyOwDt5gkvVuhB9p2PnrYHLWn_YBs57492hNhaqAFULZ1VV69q2Ec4aq6N3WkXV9CHCynm4OvRbm0zfruli7Vr4ZpU-iRtwVakm2Ml5j8H6ebaezrPF6uV1-rjINC5EzDDJjUF8w3LKsWa04lYRJQpsKEJWk0pZjnKmFVNYlYqqUhijtSk23FZsQ8bgbqjde_fV2RDlznW-TR8lZkigouCIJhceXNq7ELyt5N7Xn8r3MkfyxFIOLGViKX9ZymMKkSEUkrndWv9X_U_qB1OheSQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2709044805</pqid></control><display><type>article</type><title>3D Nanostructured Nickel Hydroxide as an Efficient Electrocatalyst for Oxygen Evolution Reaction</title><source>Springer Link</source><creator>Li, Tong ; Ma, Xinxia ; Wang, Daolei ; Wu, Jiang ; Zheng, Fasong ; Jin, Jiawen ; Wang, Qikun ; Hao, Liangsheng ; Li, Zhaojie ; Huang, Sijia</creator><creatorcontrib>Li, Tong ; Ma, Xinxia ; Wang, Daolei ; Wu, Jiang ; Zheng, Fasong ; Jin, Jiawen ; Wang, Qikun ; Hao, Liangsheng ; Li, Zhaojie ; Huang, Sijia</creatorcontrib><description>The exploration of high-efficiency and reliable non-precious metal electrocatalysts for overall water splitting is greatly vital and challenging for scientists to explore the physical structure effects with OER catalysts. Herein, we firstly developed three-dimensional ɑlpha-nickel hydroxide as an advantageous electrocatalyst for OER by a simple solvothermal method. By controlling the solvent, two kinds of regular and one kind of irregular pure ɑlpha-nickel hydroxide were successfully synthesized. Two regular catalysts’ catalytic activity can be enhanced by the level of regularity increasing. Interestingly, with the increase of irregularity, compared with nanosphere-like Ni(OH) 2 , nanoparticle-sphere-like Ni(OH) 2 sample’s specific surface areas, the number of ion transport channels, and reaction kinetics performance also raise, which actually enhances catalytic activity. In a word, the most irregular Ni(OH) 2 -NPS has the best electrocatalytic activity ( η  = 250 mV) and the lowest Tafel slope (73.9 mV dec −1 ), and the outstanding constancy (8 h) at 1.48 V (vs. RHE) could be achieved, meanwhile, the benchmark RuO 2 (340 mV and 87.4 mV dec −1 ) is also inferior to Ni(OH) 2 -NPS. By comparing three Ni(OH) 2 samples, this work provides a new single transition metal system for about 3D materials and facilitates the development of highly efficient water oxidation catalysts. Graphical Abstract</description><identifier>ISSN: 1868-2529</identifier><identifier>EISSN: 1868-5994</identifier><identifier>DOI: 10.1007/s12678-022-00757-z</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Catalysis ; Catalysts ; Catalytic activity ; Chemical synthesis ; Chemistry ; Chemistry and Materials Science ; Electrocatalysts ; Electrochemistry ; Energy Systems ; Ion transport ; Nanoparticles ; Nanospheres ; Nickel ; Nickel compounds ; Original Research ; Oxidation ; Oxygen evolution reactions ; Physical Chemistry ; Reaction kinetics ; Transition metals ; Water splitting</subject><ispartof>Electrocatalysis, 2022-11, Vol.13 (6), p.873-886</ispartof><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022</rights><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c249t-231dd08b71582c75f8ea3a942d500ec3fae8017ca7a2a6a5a69ddccd4b8ef7b3</citedby><cites>FETCH-LOGICAL-c249t-231dd08b71582c75f8ea3a942d500ec3fae8017ca7a2a6a5a69ddccd4b8ef7b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids></links><search><creatorcontrib>Li, Tong</creatorcontrib><creatorcontrib>Ma, Xinxia</creatorcontrib><creatorcontrib>Wang, Daolei</creatorcontrib><creatorcontrib>Wu, Jiang</creatorcontrib><creatorcontrib>Zheng, Fasong</creatorcontrib><creatorcontrib>Jin, Jiawen</creatorcontrib><creatorcontrib>Wang, Qikun</creatorcontrib><creatorcontrib>Hao, Liangsheng</creatorcontrib><creatorcontrib>Li, Zhaojie</creatorcontrib><creatorcontrib>Huang, Sijia</creatorcontrib><title>3D Nanostructured Nickel Hydroxide as an Efficient Electrocatalyst for Oxygen Evolution Reaction</title><title>Electrocatalysis</title><addtitle>Electrocatalysis</addtitle><description>The exploration of high-efficiency and reliable non-precious metal electrocatalysts for overall water splitting is greatly vital and challenging for scientists to explore the physical structure effects with OER catalysts. Herein, we firstly developed three-dimensional ɑlpha-nickel hydroxide as an advantageous electrocatalyst for OER by a simple solvothermal method. By controlling the solvent, two kinds of regular and one kind of irregular pure ɑlpha-nickel hydroxide were successfully synthesized. Two regular catalysts’ catalytic activity can be enhanced by the level of regularity increasing. Interestingly, with the increase of irregularity, compared with nanosphere-like Ni(OH) 2 , nanoparticle-sphere-like Ni(OH) 2 sample’s specific surface areas, the number of ion transport channels, and reaction kinetics performance also raise, which actually enhances catalytic activity. In a word, the most irregular Ni(OH) 2 -NPS has the best electrocatalytic activity ( η  = 250 mV) and the lowest Tafel slope (73.9 mV dec −1 ), and the outstanding constancy (8 h) at 1.48 V (vs. RHE) could be achieved, meanwhile, the benchmark RuO 2 (340 mV and 87.4 mV dec −1 ) is also inferior to Ni(OH) 2 -NPS. By comparing three Ni(OH) 2 samples, this work provides a new single transition metal system for about 3D materials and facilitates the development of highly efficient water oxidation catalysts. Graphical Abstract</description><subject>Catalysis</subject><subject>Catalysts</subject><subject>Catalytic activity</subject><subject>Chemical synthesis</subject><subject>Chemistry</subject><subject>Chemistry and Materials Science</subject><subject>Electrocatalysts</subject><subject>Electrochemistry</subject><subject>Energy Systems</subject><subject>Ion transport</subject><subject>Nanoparticles</subject><subject>Nanospheres</subject><subject>Nickel</subject><subject>Nickel compounds</subject><subject>Original Research</subject><subject>Oxidation</subject><subject>Oxygen evolution reactions</subject><subject>Physical Chemistry</subject><subject>Reaction kinetics</subject><subject>Transition metals</subject><subject>Water splitting</subject><issn>1868-2529</issn><issn>1868-5994</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kFFLwzAUhYMoOOb-gE8Bn6tp0jTJo8zphLGB7D1mSTo6azOTVNb9ejM78M37cs-Fc86FD4DbHN3nCLGHkOOS8QxhnKWTsux4AUY5L3lGhSguzxpTLK7BJIQdSkMEQZyOwDt5gkvVuhB9p2PnrYHLWn_YBs57492hNhaqAFULZ1VV69q2Ec4aq6N3WkXV9CHCynm4OvRbm0zfruli7Vr4ZpU-iRtwVakm2Ml5j8H6ebaezrPF6uV1-rjINC5EzDDJjUF8w3LKsWa04lYRJQpsKEJWk0pZjnKmFVNYlYqqUhijtSk23FZsQ8bgbqjde_fV2RDlznW-TR8lZkigouCIJhceXNq7ELyt5N7Xn8r3MkfyxFIOLGViKX9ZymMKkSEUkrndWv9X_U_qB1OheSQ</recordid><startdate>20221101</startdate><enddate>20221101</enddate><creator>Li, Tong</creator><creator>Ma, Xinxia</creator><creator>Wang, Daolei</creator><creator>Wu, Jiang</creator><creator>Zheng, Fasong</creator><creator>Jin, Jiawen</creator><creator>Wang, Qikun</creator><creator>Hao, Liangsheng</creator><creator>Li, Zhaojie</creator><creator>Huang, Sijia</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20221101</creationdate><title>3D Nanostructured Nickel Hydroxide as an Efficient Electrocatalyst for Oxygen Evolution Reaction</title><author>Li, Tong ; Ma, Xinxia ; Wang, Daolei ; Wu, Jiang ; Zheng, Fasong ; Jin, Jiawen ; Wang, Qikun ; Hao, Liangsheng ; Li, Zhaojie ; Huang, Sijia</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c249t-231dd08b71582c75f8ea3a942d500ec3fae8017ca7a2a6a5a69ddccd4b8ef7b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Catalysis</topic><topic>Catalysts</topic><topic>Catalytic activity</topic><topic>Chemical synthesis</topic><topic>Chemistry</topic><topic>Chemistry and Materials Science</topic><topic>Electrocatalysts</topic><topic>Electrochemistry</topic><topic>Energy Systems</topic><topic>Ion transport</topic><topic>Nanoparticles</topic><topic>Nanospheres</topic><topic>Nickel</topic><topic>Nickel compounds</topic><topic>Original Research</topic><topic>Oxidation</topic><topic>Oxygen evolution reactions</topic><topic>Physical Chemistry</topic><topic>Reaction kinetics</topic><topic>Transition metals</topic><topic>Water splitting</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Tong</creatorcontrib><creatorcontrib>Ma, Xinxia</creatorcontrib><creatorcontrib>Wang, Daolei</creatorcontrib><creatorcontrib>Wu, Jiang</creatorcontrib><creatorcontrib>Zheng, Fasong</creatorcontrib><creatorcontrib>Jin, Jiawen</creatorcontrib><creatorcontrib>Wang, Qikun</creatorcontrib><creatorcontrib>Hao, Liangsheng</creatorcontrib><creatorcontrib>Li, Zhaojie</creatorcontrib><creatorcontrib>Huang, Sijia</creatorcontrib><collection>CrossRef</collection><jtitle>Electrocatalysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Tong</au><au>Ma, Xinxia</au><au>Wang, Daolei</au><au>Wu, Jiang</au><au>Zheng, Fasong</au><au>Jin, Jiawen</au><au>Wang, Qikun</au><au>Hao, Liangsheng</au><au>Li, Zhaojie</au><au>Huang, Sijia</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>3D Nanostructured Nickel Hydroxide as an Efficient Electrocatalyst for Oxygen Evolution Reaction</atitle><jtitle>Electrocatalysis</jtitle><stitle>Electrocatalysis</stitle><date>2022-11-01</date><risdate>2022</risdate><volume>13</volume><issue>6</issue><spage>873</spage><epage>886</epage><pages>873-886</pages><issn>1868-2529</issn><eissn>1868-5994</eissn><abstract>The exploration of high-efficiency and reliable non-precious metal electrocatalysts for overall water splitting is greatly vital and challenging for scientists to explore the physical structure effects with OER catalysts. Herein, we firstly developed three-dimensional ɑlpha-nickel hydroxide as an advantageous electrocatalyst for OER by a simple solvothermal method. By controlling the solvent, two kinds of regular and one kind of irregular pure ɑlpha-nickel hydroxide were successfully synthesized. Two regular catalysts’ catalytic activity can be enhanced by the level of regularity increasing. Interestingly, with the increase of irregularity, compared with nanosphere-like Ni(OH) 2 , nanoparticle-sphere-like Ni(OH) 2 sample’s specific surface areas, the number of ion transport channels, and reaction kinetics performance also raise, which actually enhances catalytic activity. In a word, the most irregular Ni(OH) 2 -NPS has the best electrocatalytic activity ( η  = 250 mV) and the lowest Tafel slope (73.9 mV dec −1 ), and the outstanding constancy (8 h) at 1.48 V (vs. RHE) could be achieved, meanwhile, the benchmark RuO 2 (340 mV and 87.4 mV dec −1 ) is also inferior to Ni(OH) 2 -NPS. By comparing three Ni(OH) 2 samples, this work provides a new single transition metal system for about 3D materials and facilitates the development of highly efficient water oxidation catalysts. Graphical Abstract</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s12678-022-00757-z</doi><tpages>14</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1868-2529
ispartof Electrocatalysis, 2022-11, Vol.13 (6), p.873-886
issn 1868-2529
1868-5994
language eng
recordid cdi_proquest_journals_2709044805
source Springer Link
subjects Catalysis
Catalysts
Catalytic activity
Chemical synthesis
Chemistry
Chemistry and Materials Science
Electrocatalysts
Electrochemistry
Energy Systems
Ion transport
Nanoparticles
Nanospheres
Nickel
Nickel compounds
Original Research
Oxidation
Oxygen evolution reactions
Physical Chemistry
Reaction kinetics
Transition metals
Water splitting
title 3D Nanostructured Nickel Hydroxide as an Efficient Electrocatalyst for Oxygen Evolution Reaction
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T13%3A25%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=3D%20Nanostructured%20Nickel%20Hydroxide%20as%20an%20Efficient%20Electrocatalyst%20for%20Oxygen%20Evolution%20Reaction&rft.jtitle=Electrocatalysis&rft.au=Li,%20Tong&rft.date=2022-11-01&rft.volume=13&rft.issue=6&rft.spage=873&rft.epage=886&rft.pages=873-886&rft.issn=1868-2529&rft.eissn=1868-5994&rft_id=info:doi/10.1007/s12678-022-00757-z&rft_dat=%3Cproquest_cross%3E2709044805%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c249t-231dd08b71582c75f8ea3a942d500ec3fae8017ca7a2a6a5a69ddccd4b8ef7b3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2709044805&rft_id=info:pmid/&rfr_iscdi=true