Loading…

Long-term viscoelastic deformation monitoring of a concrete dam: A multi-output surrogate model approach for parameter identification

•A novel surrogate model-assisted inversion method is proposed for identifying viscoelastic parameters of dam system.•The sensitivity of the training sample size, parameter range and output quantity of the MOGP surrogate model is investigated.•The computational accuracy and efficiency of the propose...

Full description

Saved in:
Bibliographic Details
Published in:Engineering structures 2022-09, Vol.266, p.114553, Article 114553
Main Authors: Lin, Chaoning, Li, Tongchun, Chen, Siyu, Yuan, Li, van Gelder, P.H.A.J.M., Yorke-Smith, Neil
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c343t-6638ddc0ef5a7da8431fb2126eeaf3fa286b58594ad181192143a586edcb062c3
cites cdi_FETCH-LOGICAL-c343t-6638ddc0ef5a7da8431fb2126eeaf3fa286b58594ad181192143a586edcb062c3
container_end_page
container_issue
container_start_page 114553
container_title Engineering structures
container_volume 266
creator Lin, Chaoning
Li, Tongchun
Chen, Siyu
Yuan, Li
van Gelder, P.H.A.J.M.
Yorke-Smith, Neil
description •A novel surrogate model-assisted inversion method is proposed for identifying viscoelastic parameters of dam system.•The sensitivity of the training sample size, parameter range and output quantity of the MOGP surrogate model is investigated.•The computational accuracy and efficiency of the proposed inversion method are proved.•A physics-based monitoring model is calibrated for long-term deformation prediction of the concrete dam. Dam safety monitoring has become an important topic and is critical for evaluating a dam’s safety status. This study focuses on identifying the mechanical properties of a concrete dam from long-term viscoelastic deformation monitoring data. A novel inversion framework is proposed in which a surrogate model, instead of the finite element model, is placed inside the optimization loop. First, a multi-output surrogate model based on Gaussian process is trained by using data from a finite element simulation in the creep regime. In order to efficiently create a high-precision and reliable surrogate model, three test instances are conducted to investigate the impact of sample size, parameter range and output quantity on the performance of the surrogate model. Subsequently, a meta-heuristic optimization, multi-verse optimizer, is employed to identify the unknown viscoelastic parameters. The results illustrate that the identified properties allow predictions on dam displacement which are consistent with the monitoring data. Compared with the traditional inversion method based on finite element modelling, the proposed inversion method based on the multi-output surrogate model not only achieves accurate estimation of mechanical parameters but also greatly improves computational efficiency.
doi_str_mv 10.1016/j.engstruct.2022.114553
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2709092047</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0141029622006599</els_id><sourcerecordid>2709092047</sourcerecordid><originalsourceid>FETCH-LOGICAL-c343t-6638ddc0ef5a7da8431fb2126eeaf3fa286b58594ad181192143a586edcb062c3</originalsourceid><addsrcrecordid>eNqFkMmOEzEQhi0EEmHgGbDEuYOXXtzcohGbFIkLnK2KXQ6O0nZTdo_EA_DeeAjiyqkO9S9VH2OvpdhLIce3lz2mc6m0ubpXQqm9lP0w6CdsJ82ku0kr_ZTthOxlJ9Q8PmcvSrkIIZQxYsd-HXM6dxVp4Q-xuIxXKDU67jFkWqDGnPiSU6yZYjrzHDhwl5MjrMg9LO_4gS_btcYub3XdKi8bUT5D2y7Z45XDulIG9523PL4CwdKcxKPHVGOI7k_FS_YswLXgq7_zjn378P7r_afu-OXj5_vDsXO617UbR228dwLDAJMH02sZTkqqERGCDqDMeBrMMPfgpZFyVrLXMJgRvTuJUTl9x97ccttNPzYs1V7yRqlVWjWJWcxK9FNTTTeVo1wKYbArxQXop5XCPjK3F_uPuX1kbm_Mm_Nwc2J74iEi2eIiJoc-Ejatz_G_Gb8B7BKSYQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2709092047</pqid></control><display><type>article</type><title>Long-term viscoelastic deformation monitoring of a concrete dam: A multi-output surrogate model approach for parameter identification</title><source>ScienceDirect Freedom Collection</source><creator>Lin, Chaoning ; Li, Tongchun ; Chen, Siyu ; Yuan, Li ; van Gelder, P.H.A.J.M. ; Yorke-Smith, Neil</creator><creatorcontrib>Lin, Chaoning ; Li, Tongchun ; Chen, Siyu ; Yuan, Li ; van Gelder, P.H.A.J.M. ; Yorke-Smith, Neil</creatorcontrib><description>•A novel surrogate model-assisted inversion method is proposed for identifying viscoelastic parameters of dam system.•The sensitivity of the training sample size, parameter range and output quantity of the MOGP surrogate model is investigated.•The computational accuracy and efficiency of the proposed inversion method are proved.•A physics-based monitoring model is calibrated for long-term deformation prediction of the concrete dam. Dam safety monitoring has become an important topic and is critical for evaluating a dam’s safety status. This study focuses on identifying the mechanical properties of a concrete dam from long-term viscoelastic deformation monitoring data. A novel inversion framework is proposed in which a surrogate model, instead of the finite element model, is placed inside the optimization loop. First, a multi-output surrogate model based on Gaussian process is trained by using data from a finite element simulation in the creep regime. In order to efficiently create a high-precision and reliable surrogate model, three test instances are conducted to investigate the impact of sample size, parameter range and output quantity on the performance of the surrogate model. Subsequently, a meta-heuristic optimization, multi-verse optimizer, is employed to identify the unknown viscoelastic parameters. The results illustrate that the identified properties allow predictions on dam displacement which are consistent with the monitoring data. Compared with the traditional inversion method based on finite element modelling, the proposed inversion method based on the multi-output surrogate model not only achieves accurate estimation of mechanical parameters but also greatly improves computational efficiency.</description><identifier>ISSN: 0141-0296</identifier><identifier>EISSN: 1873-7323</identifier><identifier>DOI: 10.1016/j.engstruct.2022.114553</identifier><language>eng</language><publisher>Kidlington: Elsevier Ltd</publisher><subject>Computer applications ; Concrete dam ; Concrete dams ; Dam safety ; Dams ; Deformation ; Detention dams ; Finite element method ; Gaussian process ; Heuristic methods ; Inverse analysis ; Inversion ; Mathematical models ; Mechanical properties ; Monitoring ; Multi-output Gaussian process ; Optimization ; Parameter identification ; Surrogate model ; Viscoelasticity</subject><ispartof>Engineering structures, 2022-09, Vol.266, p.114553, Article 114553</ispartof><rights>2022 Elsevier Ltd</rights><rights>Copyright Elsevier BV Sep 1, 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c343t-6638ddc0ef5a7da8431fb2126eeaf3fa286b58594ad181192143a586edcb062c3</citedby><cites>FETCH-LOGICAL-c343t-6638ddc0ef5a7da8431fb2126eeaf3fa286b58594ad181192143a586edcb062c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids></links><search><creatorcontrib>Lin, Chaoning</creatorcontrib><creatorcontrib>Li, Tongchun</creatorcontrib><creatorcontrib>Chen, Siyu</creatorcontrib><creatorcontrib>Yuan, Li</creatorcontrib><creatorcontrib>van Gelder, P.H.A.J.M.</creatorcontrib><creatorcontrib>Yorke-Smith, Neil</creatorcontrib><title>Long-term viscoelastic deformation monitoring of a concrete dam: A multi-output surrogate model approach for parameter identification</title><title>Engineering structures</title><description>•A novel surrogate model-assisted inversion method is proposed for identifying viscoelastic parameters of dam system.•The sensitivity of the training sample size, parameter range and output quantity of the MOGP surrogate model is investigated.•The computational accuracy and efficiency of the proposed inversion method are proved.•A physics-based monitoring model is calibrated for long-term deformation prediction of the concrete dam. Dam safety monitoring has become an important topic and is critical for evaluating a dam’s safety status. This study focuses on identifying the mechanical properties of a concrete dam from long-term viscoelastic deformation monitoring data. A novel inversion framework is proposed in which a surrogate model, instead of the finite element model, is placed inside the optimization loop. First, a multi-output surrogate model based on Gaussian process is trained by using data from a finite element simulation in the creep regime. In order to efficiently create a high-precision and reliable surrogate model, three test instances are conducted to investigate the impact of sample size, parameter range and output quantity on the performance of the surrogate model. Subsequently, a meta-heuristic optimization, multi-verse optimizer, is employed to identify the unknown viscoelastic parameters. The results illustrate that the identified properties allow predictions on dam displacement which are consistent with the monitoring data. Compared with the traditional inversion method based on finite element modelling, the proposed inversion method based on the multi-output surrogate model not only achieves accurate estimation of mechanical parameters but also greatly improves computational efficiency.</description><subject>Computer applications</subject><subject>Concrete dam</subject><subject>Concrete dams</subject><subject>Dam safety</subject><subject>Dams</subject><subject>Deformation</subject><subject>Detention dams</subject><subject>Finite element method</subject><subject>Gaussian process</subject><subject>Heuristic methods</subject><subject>Inverse analysis</subject><subject>Inversion</subject><subject>Mathematical models</subject><subject>Mechanical properties</subject><subject>Monitoring</subject><subject>Multi-output Gaussian process</subject><subject>Optimization</subject><subject>Parameter identification</subject><subject>Surrogate model</subject><subject>Viscoelasticity</subject><issn>0141-0296</issn><issn>1873-7323</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNqFkMmOEzEQhi0EEmHgGbDEuYOXXtzcohGbFIkLnK2KXQ6O0nZTdo_EA_DeeAjiyqkO9S9VH2OvpdhLIce3lz2mc6m0ubpXQqm9lP0w6CdsJ82ku0kr_ZTthOxlJ9Q8PmcvSrkIIZQxYsd-HXM6dxVp4Q-xuIxXKDU67jFkWqDGnPiSU6yZYjrzHDhwl5MjrMg9LO_4gS_btcYub3XdKi8bUT5D2y7Z45XDulIG9523PL4CwdKcxKPHVGOI7k_FS_YswLXgq7_zjn378P7r_afu-OXj5_vDsXO617UbR228dwLDAJMH02sZTkqqERGCDqDMeBrMMPfgpZFyVrLXMJgRvTuJUTl9x97ccttNPzYs1V7yRqlVWjWJWcxK9FNTTTeVo1wKYbArxQXop5XCPjK3F_uPuX1kbm_Mm_Nwc2J74iEi2eIiJoc-Ejatz_G_Gb8B7BKSYQ</recordid><startdate>20220901</startdate><enddate>20220901</enddate><creator>Lin, Chaoning</creator><creator>Li, Tongchun</creator><creator>Chen, Siyu</creator><creator>Yuan, Li</creator><creator>van Gelder, P.H.A.J.M.</creator><creator>Yorke-Smith, Neil</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7ST</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>JG9</scope><scope>KR7</scope><scope>SOI</scope></search><sort><creationdate>20220901</creationdate><title>Long-term viscoelastic deformation monitoring of a concrete dam: A multi-output surrogate model approach for parameter identification</title><author>Lin, Chaoning ; Li, Tongchun ; Chen, Siyu ; Yuan, Li ; van Gelder, P.H.A.J.M. ; Yorke-Smith, Neil</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c343t-6638ddc0ef5a7da8431fb2126eeaf3fa286b58594ad181192143a586edcb062c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Computer applications</topic><topic>Concrete dam</topic><topic>Concrete dams</topic><topic>Dam safety</topic><topic>Dams</topic><topic>Deformation</topic><topic>Detention dams</topic><topic>Finite element method</topic><topic>Gaussian process</topic><topic>Heuristic methods</topic><topic>Inverse analysis</topic><topic>Inversion</topic><topic>Mathematical models</topic><topic>Mechanical properties</topic><topic>Monitoring</topic><topic>Multi-output Gaussian process</topic><topic>Optimization</topic><topic>Parameter identification</topic><topic>Surrogate model</topic><topic>Viscoelasticity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lin, Chaoning</creatorcontrib><creatorcontrib>Li, Tongchun</creatorcontrib><creatorcontrib>Chen, Siyu</creatorcontrib><creatorcontrib>Yuan, Li</creatorcontrib><creatorcontrib>van Gelder, P.H.A.J.M.</creatorcontrib><creatorcontrib>Yorke-Smith, Neil</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Environment Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Environment Abstracts</collection><jtitle>Engineering structures</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lin, Chaoning</au><au>Li, Tongchun</au><au>Chen, Siyu</au><au>Yuan, Li</au><au>van Gelder, P.H.A.J.M.</au><au>Yorke-Smith, Neil</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Long-term viscoelastic deformation monitoring of a concrete dam: A multi-output surrogate model approach for parameter identification</atitle><jtitle>Engineering structures</jtitle><date>2022-09-01</date><risdate>2022</risdate><volume>266</volume><spage>114553</spage><pages>114553-</pages><artnum>114553</artnum><issn>0141-0296</issn><eissn>1873-7323</eissn><abstract>•A novel surrogate model-assisted inversion method is proposed for identifying viscoelastic parameters of dam system.•The sensitivity of the training sample size, parameter range and output quantity of the MOGP surrogate model is investigated.•The computational accuracy and efficiency of the proposed inversion method are proved.•A physics-based monitoring model is calibrated for long-term deformation prediction of the concrete dam. Dam safety monitoring has become an important topic and is critical for evaluating a dam’s safety status. This study focuses on identifying the mechanical properties of a concrete dam from long-term viscoelastic deformation monitoring data. A novel inversion framework is proposed in which a surrogate model, instead of the finite element model, is placed inside the optimization loop. First, a multi-output surrogate model based on Gaussian process is trained by using data from a finite element simulation in the creep regime. In order to efficiently create a high-precision and reliable surrogate model, three test instances are conducted to investigate the impact of sample size, parameter range and output quantity on the performance of the surrogate model. Subsequently, a meta-heuristic optimization, multi-verse optimizer, is employed to identify the unknown viscoelastic parameters. The results illustrate that the identified properties allow predictions on dam displacement which are consistent with the monitoring data. Compared with the traditional inversion method based on finite element modelling, the proposed inversion method based on the multi-output surrogate model not only achieves accurate estimation of mechanical parameters but also greatly improves computational efficiency.</abstract><cop>Kidlington</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.engstruct.2022.114553</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0141-0296
ispartof Engineering structures, 2022-09, Vol.266, p.114553, Article 114553
issn 0141-0296
1873-7323
language eng
recordid cdi_proquest_journals_2709092047
source ScienceDirect Freedom Collection
subjects Computer applications
Concrete dam
Concrete dams
Dam safety
Dams
Deformation
Detention dams
Finite element method
Gaussian process
Heuristic methods
Inverse analysis
Inversion
Mathematical models
Mechanical properties
Monitoring
Multi-output Gaussian process
Optimization
Parameter identification
Surrogate model
Viscoelasticity
title Long-term viscoelastic deformation monitoring of a concrete dam: A multi-output surrogate model approach for parameter identification
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T12%3A53%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Long-term%20viscoelastic%20deformation%20monitoring%20of%20a%20concrete%20dam:%20A%20multi-output%20surrogate%20model%20approach%20for%20parameter%20identification&rft.jtitle=Engineering%20structures&rft.au=Lin,%20Chaoning&rft.date=2022-09-01&rft.volume=266&rft.spage=114553&rft.pages=114553-&rft.artnum=114553&rft.issn=0141-0296&rft.eissn=1873-7323&rft_id=info:doi/10.1016/j.engstruct.2022.114553&rft_dat=%3Cproquest_cross%3E2709092047%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c343t-6638ddc0ef5a7da8431fb2126eeaf3fa286b58594ad181192143a586edcb062c3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2709092047&rft_id=info:pmid/&rfr_iscdi=true