Loading…
Long-term viscoelastic deformation monitoring of a concrete dam: A multi-output surrogate model approach for parameter identification
•A novel surrogate model-assisted inversion method is proposed for identifying viscoelastic parameters of dam system.•The sensitivity of the training sample size, parameter range and output quantity of the MOGP surrogate model is investigated.•The computational accuracy and efficiency of the propose...
Saved in:
Published in: | Engineering structures 2022-09, Vol.266, p.114553, Article 114553 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c343t-6638ddc0ef5a7da8431fb2126eeaf3fa286b58594ad181192143a586edcb062c3 |
---|---|
cites | cdi_FETCH-LOGICAL-c343t-6638ddc0ef5a7da8431fb2126eeaf3fa286b58594ad181192143a586edcb062c3 |
container_end_page | |
container_issue | |
container_start_page | 114553 |
container_title | Engineering structures |
container_volume | 266 |
creator | Lin, Chaoning Li, Tongchun Chen, Siyu Yuan, Li van Gelder, P.H.A.J.M. Yorke-Smith, Neil |
description | •A novel surrogate model-assisted inversion method is proposed for identifying viscoelastic parameters of dam system.•The sensitivity of the training sample size, parameter range and output quantity of the MOGP surrogate model is investigated.•The computational accuracy and efficiency of the proposed inversion method are proved.•A physics-based monitoring model is calibrated for long-term deformation prediction of the concrete dam.
Dam safety monitoring has become an important topic and is critical for evaluating a dam’s safety status. This study focuses on identifying the mechanical properties of a concrete dam from long-term viscoelastic deformation monitoring data. A novel inversion framework is proposed in which a surrogate model, instead of the finite element model, is placed inside the optimization loop. First, a multi-output surrogate model based on Gaussian process is trained by using data from a finite element simulation in the creep regime. In order to efficiently create a high-precision and reliable surrogate model, three test instances are conducted to investigate the impact of sample size, parameter range and output quantity on the performance of the surrogate model. Subsequently, a meta-heuristic optimization, multi-verse optimizer, is employed to identify the unknown viscoelastic parameters. The results illustrate that the identified properties allow predictions on dam displacement which are consistent with the monitoring data. Compared with the traditional inversion method based on finite element modelling, the proposed inversion method based on the multi-output surrogate model not only achieves accurate estimation of mechanical parameters but also greatly improves computational efficiency. |
doi_str_mv | 10.1016/j.engstruct.2022.114553 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2709092047</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0141029622006599</els_id><sourcerecordid>2709092047</sourcerecordid><originalsourceid>FETCH-LOGICAL-c343t-6638ddc0ef5a7da8431fb2126eeaf3fa286b58594ad181192143a586edcb062c3</originalsourceid><addsrcrecordid>eNqFkMmOEzEQhi0EEmHgGbDEuYOXXtzcohGbFIkLnK2KXQ6O0nZTdo_EA_DeeAjiyqkO9S9VH2OvpdhLIce3lz2mc6m0ubpXQqm9lP0w6CdsJ82ku0kr_ZTthOxlJ9Q8PmcvSrkIIZQxYsd-HXM6dxVp4Q-xuIxXKDU67jFkWqDGnPiSU6yZYjrzHDhwl5MjrMg9LO_4gS_btcYub3XdKi8bUT5D2y7Z45XDulIG9523PL4CwdKcxKPHVGOI7k_FS_YswLXgq7_zjn378P7r_afu-OXj5_vDsXO617UbR228dwLDAJMH02sZTkqqERGCDqDMeBrMMPfgpZFyVrLXMJgRvTuJUTl9x97ccttNPzYs1V7yRqlVWjWJWcxK9FNTTTeVo1wKYbArxQXop5XCPjK3F_uPuX1kbm_Mm_Nwc2J74iEi2eIiJoc-Ejatz_G_Gb8B7BKSYQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2709092047</pqid></control><display><type>article</type><title>Long-term viscoelastic deformation monitoring of a concrete dam: A multi-output surrogate model approach for parameter identification</title><source>ScienceDirect Freedom Collection</source><creator>Lin, Chaoning ; Li, Tongchun ; Chen, Siyu ; Yuan, Li ; van Gelder, P.H.A.J.M. ; Yorke-Smith, Neil</creator><creatorcontrib>Lin, Chaoning ; Li, Tongchun ; Chen, Siyu ; Yuan, Li ; van Gelder, P.H.A.J.M. ; Yorke-Smith, Neil</creatorcontrib><description>•A novel surrogate model-assisted inversion method is proposed for identifying viscoelastic parameters of dam system.•The sensitivity of the training sample size, parameter range and output quantity of the MOGP surrogate model is investigated.•The computational accuracy and efficiency of the proposed inversion method are proved.•A physics-based monitoring model is calibrated for long-term deformation prediction of the concrete dam.
Dam safety monitoring has become an important topic and is critical for evaluating a dam’s safety status. This study focuses on identifying the mechanical properties of a concrete dam from long-term viscoelastic deformation monitoring data. A novel inversion framework is proposed in which a surrogate model, instead of the finite element model, is placed inside the optimization loop. First, a multi-output surrogate model based on Gaussian process is trained by using data from a finite element simulation in the creep regime. In order to efficiently create a high-precision and reliable surrogate model, three test instances are conducted to investigate the impact of sample size, parameter range and output quantity on the performance of the surrogate model. Subsequently, a meta-heuristic optimization, multi-verse optimizer, is employed to identify the unknown viscoelastic parameters. The results illustrate that the identified properties allow predictions on dam displacement which are consistent with the monitoring data. Compared with the traditional inversion method based on finite element modelling, the proposed inversion method based on the multi-output surrogate model not only achieves accurate estimation of mechanical parameters but also greatly improves computational efficiency.</description><identifier>ISSN: 0141-0296</identifier><identifier>EISSN: 1873-7323</identifier><identifier>DOI: 10.1016/j.engstruct.2022.114553</identifier><language>eng</language><publisher>Kidlington: Elsevier Ltd</publisher><subject>Computer applications ; Concrete dam ; Concrete dams ; Dam safety ; Dams ; Deformation ; Detention dams ; Finite element method ; Gaussian process ; Heuristic methods ; Inverse analysis ; Inversion ; Mathematical models ; Mechanical properties ; Monitoring ; Multi-output Gaussian process ; Optimization ; Parameter identification ; Surrogate model ; Viscoelasticity</subject><ispartof>Engineering structures, 2022-09, Vol.266, p.114553, Article 114553</ispartof><rights>2022 Elsevier Ltd</rights><rights>Copyright Elsevier BV Sep 1, 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c343t-6638ddc0ef5a7da8431fb2126eeaf3fa286b58594ad181192143a586edcb062c3</citedby><cites>FETCH-LOGICAL-c343t-6638ddc0ef5a7da8431fb2126eeaf3fa286b58594ad181192143a586edcb062c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids></links><search><creatorcontrib>Lin, Chaoning</creatorcontrib><creatorcontrib>Li, Tongchun</creatorcontrib><creatorcontrib>Chen, Siyu</creatorcontrib><creatorcontrib>Yuan, Li</creatorcontrib><creatorcontrib>van Gelder, P.H.A.J.M.</creatorcontrib><creatorcontrib>Yorke-Smith, Neil</creatorcontrib><title>Long-term viscoelastic deformation monitoring of a concrete dam: A multi-output surrogate model approach for parameter identification</title><title>Engineering structures</title><description>•A novel surrogate model-assisted inversion method is proposed for identifying viscoelastic parameters of dam system.•The sensitivity of the training sample size, parameter range and output quantity of the MOGP surrogate model is investigated.•The computational accuracy and efficiency of the proposed inversion method are proved.•A physics-based monitoring model is calibrated for long-term deformation prediction of the concrete dam.
Dam safety monitoring has become an important topic and is critical for evaluating a dam’s safety status. This study focuses on identifying the mechanical properties of a concrete dam from long-term viscoelastic deformation monitoring data. A novel inversion framework is proposed in which a surrogate model, instead of the finite element model, is placed inside the optimization loop. First, a multi-output surrogate model based on Gaussian process is trained by using data from a finite element simulation in the creep regime. In order to efficiently create a high-precision and reliable surrogate model, three test instances are conducted to investigate the impact of sample size, parameter range and output quantity on the performance of the surrogate model. Subsequently, a meta-heuristic optimization, multi-verse optimizer, is employed to identify the unknown viscoelastic parameters. The results illustrate that the identified properties allow predictions on dam displacement which are consistent with the monitoring data. Compared with the traditional inversion method based on finite element modelling, the proposed inversion method based on the multi-output surrogate model not only achieves accurate estimation of mechanical parameters but also greatly improves computational efficiency.</description><subject>Computer applications</subject><subject>Concrete dam</subject><subject>Concrete dams</subject><subject>Dam safety</subject><subject>Dams</subject><subject>Deformation</subject><subject>Detention dams</subject><subject>Finite element method</subject><subject>Gaussian process</subject><subject>Heuristic methods</subject><subject>Inverse analysis</subject><subject>Inversion</subject><subject>Mathematical models</subject><subject>Mechanical properties</subject><subject>Monitoring</subject><subject>Multi-output Gaussian process</subject><subject>Optimization</subject><subject>Parameter identification</subject><subject>Surrogate model</subject><subject>Viscoelasticity</subject><issn>0141-0296</issn><issn>1873-7323</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNqFkMmOEzEQhi0EEmHgGbDEuYOXXtzcohGbFIkLnK2KXQ6O0nZTdo_EA_DeeAjiyqkO9S9VH2OvpdhLIce3lz2mc6m0ubpXQqm9lP0w6CdsJ82ku0kr_ZTthOxlJ9Q8PmcvSrkIIZQxYsd-HXM6dxVp4Q-xuIxXKDU67jFkWqDGnPiSU6yZYjrzHDhwl5MjrMg9LO_4gS_btcYub3XdKi8bUT5D2y7Z45XDulIG9523PL4CwdKcxKPHVGOI7k_FS_YswLXgq7_zjn378P7r_afu-OXj5_vDsXO617UbR228dwLDAJMH02sZTkqqERGCDqDMeBrMMPfgpZFyVrLXMJgRvTuJUTl9x97ccttNPzYs1V7yRqlVWjWJWcxK9FNTTTeVo1wKYbArxQXop5XCPjK3F_uPuX1kbm_Mm_Nwc2J74iEi2eIiJoc-Ejatz_G_Gb8B7BKSYQ</recordid><startdate>20220901</startdate><enddate>20220901</enddate><creator>Lin, Chaoning</creator><creator>Li, Tongchun</creator><creator>Chen, Siyu</creator><creator>Yuan, Li</creator><creator>van Gelder, P.H.A.J.M.</creator><creator>Yorke-Smith, Neil</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7ST</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>JG9</scope><scope>KR7</scope><scope>SOI</scope></search><sort><creationdate>20220901</creationdate><title>Long-term viscoelastic deformation monitoring of a concrete dam: A multi-output surrogate model approach for parameter identification</title><author>Lin, Chaoning ; Li, Tongchun ; Chen, Siyu ; Yuan, Li ; van Gelder, P.H.A.J.M. ; Yorke-Smith, Neil</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c343t-6638ddc0ef5a7da8431fb2126eeaf3fa286b58594ad181192143a586edcb062c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Computer applications</topic><topic>Concrete dam</topic><topic>Concrete dams</topic><topic>Dam safety</topic><topic>Dams</topic><topic>Deformation</topic><topic>Detention dams</topic><topic>Finite element method</topic><topic>Gaussian process</topic><topic>Heuristic methods</topic><topic>Inverse analysis</topic><topic>Inversion</topic><topic>Mathematical models</topic><topic>Mechanical properties</topic><topic>Monitoring</topic><topic>Multi-output Gaussian process</topic><topic>Optimization</topic><topic>Parameter identification</topic><topic>Surrogate model</topic><topic>Viscoelasticity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lin, Chaoning</creatorcontrib><creatorcontrib>Li, Tongchun</creatorcontrib><creatorcontrib>Chen, Siyu</creatorcontrib><creatorcontrib>Yuan, Li</creatorcontrib><creatorcontrib>van Gelder, P.H.A.J.M.</creatorcontrib><creatorcontrib>Yorke-Smith, Neil</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Environment Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Environment Abstracts</collection><jtitle>Engineering structures</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lin, Chaoning</au><au>Li, Tongchun</au><au>Chen, Siyu</au><au>Yuan, Li</au><au>van Gelder, P.H.A.J.M.</au><au>Yorke-Smith, Neil</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Long-term viscoelastic deformation monitoring of a concrete dam: A multi-output surrogate model approach for parameter identification</atitle><jtitle>Engineering structures</jtitle><date>2022-09-01</date><risdate>2022</risdate><volume>266</volume><spage>114553</spage><pages>114553-</pages><artnum>114553</artnum><issn>0141-0296</issn><eissn>1873-7323</eissn><abstract>•A novel surrogate model-assisted inversion method is proposed for identifying viscoelastic parameters of dam system.•The sensitivity of the training sample size, parameter range and output quantity of the MOGP surrogate model is investigated.•The computational accuracy and efficiency of the proposed inversion method are proved.•A physics-based monitoring model is calibrated for long-term deformation prediction of the concrete dam.
Dam safety monitoring has become an important topic and is critical for evaluating a dam’s safety status. This study focuses on identifying the mechanical properties of a concrete dam from long-term viscoelastic deformation monitoring data. A novel inversion framework is proposed in which a surrogate model, instead of the finite element model, is placed inside the optimization loop. First, a multi-output surrogate model based on Gaussian process is trained by using data from a finite element simulation in the creep regime. In order to efficiently create a high-precision and reliable surrogate model, three test instances are conducted to investigate the impact of sample size, parameter range and output quantity on the performance of the surrogate model. Subsequently, a meta-heuristic optimization, multi-verse optimizer, is employed to identify the unknown viscoelastic parameters. The results illustrate that the identified properties allow predictions on dam displacement which are consistent with the monitoring data. Compared with the traditional inversion method based on finite element modelling, the proposed inversion method based on the multi-output surrogate model not only achieves accurate estimation of mechanical parameters but also greatly improves computational efficiency.</abstract><cop>Kidlington</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.engstruct.2022.114553</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0141-0296 |
ispartof | Engineering structures, 2022-09, Vol.266, p.114553, Article 114553 |
issn | 0141-0296 1873-7323 |
language | eng |
recordid | cdi_proquest_journals_2709092047 |
source | ScienceDirect Freedom Collection |
subjects | Computer applications Concrete dam Concrete dams Dam safety Dams Deformation Detention dams Finite element method Gaussian process Heuristic methods Inverse analysis Inversion Mathematical models Mechanical properties Monitoring Multi-output Gaussian process Optimization Parameter identification Surrogate model Viscoelasticity |
title | Long-term viscoelastic deformation monitoring of a concrete dam: A multi-output surrogate model approach for parameter identification |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T12%3A53%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Long-term%20viscoelastic%20deformation%20monitoring%20of%20a%20concrete%20dam:%20A%20multi-output%20surrogate%20model%20approach%20for%20parameter%20identification&rft.jtitle=Engineering%20structures&rft.au=Lin,%20Chaoning&rft.date=2022-09-01&rft.volume=266&rft.spage=114553&rft.pages=114553-&rft.artnum=114553&rft.issn=0141-0296&rft.eissn=1873-7323&rft_id=info:doi/10.1016/j.engstruct.2022.114553&rft_dat=%3Cproquest_cross%3E2709092047%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c343t-6638ddc0ef5a7da8431fb2126eeaf3fa286b58594ad181192143a586edcb062c3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2709092047&rft_id=info:pmid/&rfr_iscdi=true |