Loading…

Estimation of fatigue crack initiation and growth in engineering product development using a digital twin approach

•This study proposes a hybrid digital twin approach to estimate uncertain crack initiation and growth.•The validity and efficiency of the proposed methodology is verified through fatigue test data.•The updated model, which is validated quantitatively and qualitatively, is compared with fatigue test...

Full description

Saved in:
Bibliographic Details
Published in:Reliability engineering & system safety 2022-10, Vol.226, p.108721, Article 108721
Main Authors: Kim, Wongon, Lee, Guesuk, Son, Hyejeong, Choi, Hyunhee, Youn, Byeng D.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c258t-a006af55802cfbccc1e3ed09e254014823833c61020fe356caae0cdde603282c3
cites cdi_FETCH-LOGICAL-c258t-a006af55802cfbccc1e3ed09e254014823833c61020fe356caae0cdde603282c3
container_end_page
container_issue
container_start_page 108721
container_title Reliability engineering & system safety
container_volume 226
creator Kim, Wongon
Lee, Guesuk
Son, Hyejeong
Choi, Hyunhee
Youn, Byeng D.
description •This study proposes a hybrid digital twin approach to estimate uncertain crack initiation and growth.•The validity and efficiency of the proposed methodology is verified through fatigue test data.•The updated model, which is validated quantitatively and qualitatively, is compared with fatigue test results. A digital twin is a computational model in cyberspace that is used to support engineering decisions. Maintaining high predictive capability of a digital twin model is of great concern to the engineers who make design decisions at the early stages of product development. In the work described in this paper, the predictive capability of the digital twin approach is improved by considering uncertainties in manufacturing and test conditions. The proposed digital twin approach can be used in a variety of product development settings. The proposed idea takes advantage of hybrid digital twin approaches, using both data-driven and physics-based approaches. The proposed approach is based on two techniques; (i) statistical model calibration and (ii) probabilistic element updating. In statistical model calibration, statistical parameters of input variables are estimated. Further, probabilistic analysis using estimated statistical parameters can predict possible critical elements. In probabilistic element updating procedures, the possible crack initiation and growth element is updated. The validity of the proposed method is demonstrated using a case study of an automotive sub-frame fatigue test. From the results, we conclude that the proposed digital twin approach can accurately estimate crack initiation and growth of an automotive structure under uncertain loading conditions and material properties.
doi_str_mv 10.1016/j.ress.2022.108721
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2709092962</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0951832022003453</els_id><sourcerecordid>2709092962</sourcerecordid><originalsourceid>FETCH-LOGICAL-c258t-a006af55802cfbccc1e3ed09e254014823833c61020fe356caae0cdde603282c3</originalsourceid><addsrcrecordid>eNp9kE1LAzEQhoMoWD_-gKeA562TpLvNghcpfoHgRc8hTmbX1DZbk6zivzdlPXuaYeZ95x0exi4EzAWI5mo9j5TSXIKUZaCXUhywmdDLtgKtmkM2g7YWlVYSjtlJSmsAWLT1csbibcp-a7MfAh863pWuH4ljtPjBffDZTzsbHO_j8J3fy5RT6H0gij70fBcHN2Lmjr5oM-y2FDIf035jufO9z3bD83cx2V2RWnw_Y0ed3SQ6_6un7PXu9mX1UD093z-ubp4qlLXOlQVobFfXGiR2b4goSJGDlmS9ALHQUmmlsBEgoSNVN2gtATpHDSipJapTdjndLbGfI6Vs1sMYQ4k0cgkttLJtZFHJSYVxSClSZ3axAIk_RoDZszVrs2dr9mzNxLaYricTlf-_PEWT0FNAcj4SZuMG_5_9F0njhIY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2709092962</pqid></control><display><type>article</type><title>Estimation of fatigue crack initiation and growth in engineering product development using a digital twin approach</title><source>ScienceDirect Freedom Collection 2022-2024</source><creator>Kim, Wongon ; Lee, Guesuk ; Son, Hyejeong ; Choi, Hyunhee ; Youn, Byeng D.</creator><creatorcontrib>Kim, Wongon ; Lee, Guesuk ; Son, Hyejeong ; Choi, Hyunhee ; Youn, Byeng D.</creatorcontrib><description>•This study proposes a hybrid digital twin approach to estimate uncertain crack initiation and growth.•The validity and efficiency of the proposed methodology is verified through fatigue test data.•The updated model, which is validated quantitatively and qualitatively, is compared with fatigue test results. A digital twin is a computational model in cyberspace that is used to support engineering decisions. Maintaining high predictive capability of a digital twin model is of great concern to the engineers who make design decisions at the early stages of product development. In the work described in this paper, the predictive capability of the digital twin approach is improved by considering uncertainties in manufacturing and test conditions. The proposed digital twin approach can be used in a variety of product development settings. The proposed idea takes advantage of hybrid digital twin approaches, using both data-driven and physics-based approaches. The proposed approach is based on two techniques; (i) statistical model calibration and (ii) probabilistic element updating. In statistical model calibration, statistical parameters of input variables are estimated. Further, probabilistic analysis using estimated statistical parameters can predict possible critical elements. In probabilistic element updating procedures, the possible crack initiation and growth element is updated. The validity of the proposed method is demonstrated using a case study of an automotive sub-frame fatigue test. From the results, we conclude that the proposed digital twin approach can accurately estimate crack initiation and growth of an automotive structure under uncertain loading conditions and material properties.</description><identifier>ISSN: 0951-8320</identifier><identifier>EISSN: 1879-0836</identifier><identifier>DOI: 10.1016/j.ress.2022.108721</identifier><language>eng</language><publisher>Barking: Elsevier Ltd</publisher><subject>Calibration ; Computer applications ; Crack estimation ; Crack initiation ; Crack propagation ; Decisions ; Digital twin ; Digital twins ; Fatigue failure ; Fatigue tests ; Fracture mechanics ; Internet ; Material properties ; Mathematical models ; Model updating ; Optimization-based statistical model calibration ; Parameters ; Probabilistic analysis ; Product development ; Reliability engineering ; Statistical analysis ; Statistical models</subject><ispartof>Reliability engineering &amp; system safety, 2022-10, Vol.226, p.108721, Article 108721</ispartof><rights>2022 Elsevier Ltd</rights><rights>Copyright Elsevier BV Oct 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c258t-a006af55802cfbccc1e3ed09e254014823833c61020fe356caae0cdde603282c3</citedby><cites>FETCH-LOGICAL-c258t-a006af55802cfbccc1e3ed09e254014823833c61020fe356caae0cdde603282c3</cites><orcidid>0000-0003-0135-3660</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Kim, Wongon</creatorcontrib><creatorcontrib>Lee, Guesuk</creatorcontrib><creatorcontrib>Son, Hyejeong</creatorcontrib><creatorcontrib>Choi, Hyunhee</creatorcontrib><creatorcontrib>Youn, Byeng D.</creatorcontrib><title>Estimation of fatigue crack initiation and growth in engineering product development using a digital twin approach</title><title>Reliability engineering &amp; system safety</title><description>•This study proposes a hybrid digital twin approach to estimate uncertain crack initiation and growth.•The validity and efficiency of the proposed methodology is verified through fatigue test data.•The updated model, which is validated quantitatively and qualitatively, is compared with fatigue test results. A digital twin is a computational model in cyberspace that is used to support engineering decisions. Maintaining high predictive capability of a digital twin model is of great concern to the engineers who make design decisions at the early stages of product development. In the work described in this paper, the predictive capability of the digital twin approach is improved by considering uncertainties in manufacturing and test conditions. The proposed digital twin approach can be used in a variety of product development settings. The proposed idea takes advantage of hybrid digital twin approaches, using both data-driven and physics-based approaches. The proposed approach is based on two techniques; (i) statistical model calibration and (ii) probabilistic element updating. In statistical model calibration, statistical parameters of input variables are estimated. Further, probabilistic analysis using estimated statistical parameters can predict possible critical elements. In probabilistic element updating procedures, the possible crack initiation and growth element is updated. The validity of the proposed method is demonstrated using a case study of an automotive sub-frame fatigue test. From the results, we conclude that the proposed digital twin approach can accurately estimate crack initiation and growth of an automotive structure under uncertain loading conditions and material properties.</description><subject>Calibration</subject><subject>Computer applications</subject><subject>Crack estimation</subject><subject>Crack initiation</subject><subject>Crack propagation</subject><subject>Decisions</subject><subject>Digital twin</subject><subject>Digital twins</subject><subject>Fatigue failure</subject><subject>Fatigue tests</subject><subject>Fracture mechanics</subject><subject>Internet</subject><subject>Material properties</subject><subject>Mathematical models</subject><subject>Model updating</subject><subject>Optimization-based statistical model calibration</subject><subject>Parameters</subject><subject>Probabilistic analysis</subject><subject>Product development</subject><subject>Reliability engineering</subject><subject>Statistical analysis</subject><subject>Statistical models</subject><issn>0951-8320</issn><issn>1879-0836</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LAzEQhoMoWD_-gKeA562TpLvNghcpfoHgRc8hTmbX1DZbk6zivzdlPXuaYeZ95x0exi4EzAWI5mo9j5TSXIKUZaCXUhywmdDLtgKtmkM2g7YWlVYSjtlJSmsAWLT1csbibcp-a7MfAh863pWuH4ljtPjBffDZTzsbHO_j8J3fy5RT6H0gij70fBcHN2Lmjr5oM-y2FDIf035jufO9z3bD83cx2V2RWnw_Y0ed3SQ6_6un7PXu9mX1UD093z-ubp4qlLXOlQVobFfXGiR2b4goSJGDlmS9ALHQUmmlsBEgoSNVN2gtATpHDSipJapTdjndLbGfI6Vs1sMYQ4k0cgkttLJtZFHJSYVxSClSZ3axAIk_RoDZszVrs2dr9mzNxLaYricTlf-_PEWT0FNAcj4SZuMG_5_9F0njhIY</recordid><startdate>202210</startdate><enddate>202210</enddate><creator>Kim, Wongon</creator><creator>Lee, Guesuk</creator><creator>Son, Hyejeong</creator><creator>Choi, Hyunhee</creator><creator>Youn, Byeng D.</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7ST</scope><scope>7TB</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>SOI</scope><orcidid>https://orcid.org/0000-0003-0135-3660</orcidid></search><sort><creationdate>202210</creationdate><title>Estimation of fatigue crack initiation and growth in engineering product development using a digital twin approach</title><author>Kim, Wongon ; Lee, Guesuk ; Son, Hyejeong ; Choi, Hyunhee ; Youn, Byeng D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c258t-a006af55802cfbccc1e3ed09e254014823833c61020fe356caae0cdde603282c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Calibration</topic><topic>Computer applications</topic><topic>Crack estimation</topic><topic>Crack initiation</topic><topic>Crack propagation</topic><topic>Decisions</topic><topic>Digital twin</topic><topic>Digital twins</topic><topic>Fatigue failure</topic><topic>Fatigue tests</topic><topic>Fracture mechanics</topic><topic>Internet</topic><topic>Material properties</topic><topic>Mathematical models</topic><topic>Model updating</topic><topic>Optimization-based statistical model calibration</topic><topic>Parameters</topic><topic>Probabilistic analysis</topic><topic>Product development</topic><topic>Reliability engineering</topic><topic>Statistical analysis</topic><topic>Statistical models</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kim, Wongon</creatorcontrib><creatorcontrib>Lee, Guesuk</creatorcontrib><creatorcontrib>Son, Hyejeong</creatorcontrib><creatorcontrib>Choi, Hyunhee</creatorcontrib><creatorcontrib>Youn, Byeng D.</creatorcontrib><collection>CrossRef</collection><collection>Environment Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Environment Abstracts</collection><jtitle>Reliability engineering &amp; system safety</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kim, Wongon</au><au>Lee, Guesuk</au><au>Son, Hyejeong</au><au>Choi, Hyunhee</au><au>Youn, Byeng D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Estimation of fatigue crack initiation and growth in engineering product development using a digital twin approach</atitle><jtitle>Reliability engineering &amp; system safety</jtitle><date>2022-10</date><risdate>2022</risdate><volume>226</volume><spage>108721</spage><pages>108721-</pages><artnum>108721</artnum><issn>0951-8320</issn><eissn>1879-0836</eissn><abstract>•This study proposes a hybrid digital twin approach to estimate uncertain crack initiation and growth.•The validity and efficiency of the proposed methodology is verified through fatigue test data.•The updated model, which is validated quantitatively and qualitatively, is compared with fatigue test results. A digital twin is a computational model in cyberspace that is used to support engineering decisions. Maintaining high predictive capability of a digital twin model is of great concern to the engineers who make design decisions at the early stages of product development. In the work described in this paper, the predictive capability of the digital twin approach is improved by considering uncertainties in manufacturing and test conditions. The proposed digital twin approach can be used in a variety of product development settings. The proposed idea takes advantage of hybrid digital twin approaches, using both data-driven and physics-based approaches. The proposed approach is based on two techniques; (i) statistical model calibration and (ii) probabilistic element updating. In statistical model calibration, statistical parameters of input variables are estimated. Further, probabilistic analysis using estimated statistical parameters can predict possible critical elements. In probabilistic element updating procedures, the possible crack initiation and growth element is updated. The validity of the proposed method is demonstrated using a case study of an automotive sub-frame fatigue test. From the results, we conclude that the proposed digital twin approach can accurately estimate crack initiation and growth of an automotive structure under uncertain loading conditions and material properties.</abstract><cop>Barking</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.ress.2022.108721</doi><orcidid>https://orcid.org/0000-0003-0135-3660</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0951-8320
ispartof Reliability engineering & system safety, 2022-10, Vol.226, p.108721, Article 108721
issn 0951-8320
1879-0836
language eng
recordid cdi_proquest_journals_2709092962
source ScienceDirect Freedom Collection 2022-2024
subjects Calibration
Computer applications
Crack estimation
Crack initiation
Crack propagation
Decisions
Digital twin
Digital twins
Fatigue failure
Fatigue tests
Fracture mechanics
Internet
Material properties
Mathematical models
Model updating
Optimization-based statistical model calibration
Parameters
Probabilistic analysis
Product development
Reliability engineering
Statistical analysis
Statistical models
title Estimation of fatigue crack initiation and growth in engineering product development using a digital twin approach
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T11%3A39%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Estimation%20of%20fatigue%20crack%20initiation%20and%20growth%20in%20engineering%20product%20development%20using%20a%20digital%20twin%20approach&rft.jtitle=Reliability%20engineering%20&%20system%20safety&rft.au=Kim,%20Wongon&rft.date=2022-10&rft.volume=226&rft.spage=108721&rft.pages=108721-&rft.artnum=108721&rft.issn=0951-8320&rft.eissn=1879-0836&rft_id=info:doi/10.1016/j.ress.2022.108721&rft_dat=%3Cproquest_cross%3E2709092962%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c258t-a006af55802cfbccc1e3ed09e254014823833c61020fe356caae0cdde603282c3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2709092962&rft_id=info:pmid/&rfr_iscdi=true