Loading…
Low temperature coefficient of resistivity in antiperovskite Mn3Ga0.7Sn0.3N compound
An antiperovskite Mn 3 Ga 0.7 Sn 0.3 N compound was prepared by solid-state reaction. Temperature coefficient of electronic resistivity, magnetic property and thermal property dependent of temperature were characterized. Low temperature coefficient resistivity was first found in antiperovskite Mn 3...
Saved in:
Published in: | Applied physics. A, Materials science & processing Materials science & processing, 2022-09, Vol.128 (9), Article 851 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c282t-79b3cb1a9a8211783da1cab224570f1eca1fc2af068341dd4344c46448a2b3a93 |
---|---|
cites | cdi_FETCH-LOGICAL-c282t-79b3cb1a9a8211783da1cab224570f1eca1fc2af068341dd4344c46448a2b3a93 |
container_end_page | |
container_issue | 9 |
container_start_page | |
container_title | Applied physics. A, Materials science & processing |
container_volume | 128 |
creator | Dai, Yongjuan Wu, Xiangxiang Guo, Dong Sun, Zhonghua |
description | An antiperovskite Mn
3
Ga
0.7
Sn
0.3
N compound was prepared by solid-state reaction. Temperature coefficient of electronic resistivity, magnetic property and thermal property dependent of temperature were characterized. Low temperature coefficient resistivity was first found in antiperovskite Mn
3
GaN class materials. The Mn
3
Ga
0.7
Sn
0.3
N compound showed low temperature coefficient of resistivity and the dρ/dT and TCR value in the measured temperature range 373–400 K is − 2.05 × 10
−10
Ωm/K and − 63 ppm.K
−1
, respectively. A weak antiferromagnetic to ferromagnetic transition is corresponding to the abrupt change of resistivity and pronounced decrease of the lattice parameter. Both the magnetic transition and large lattice contraction have a great effect on the electronic structure, which is the key to understand the mechanism of the peculiar low TCR. Although the origin of low TCR needs to be confirmed by further exploration, the current result will be helpful to explore more novel materials of low TCR and clarify physical mechanism behind it. |
doi_str_mv | 10.1007/s00339-022-05995-y |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2709340541</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2709340541</sourcerecordid><originalsourceid>FETCH-LOGICAL-c282t-79b3cb1a9a8211783da1cab224570f1eca1fc2af068341dd4344c46448a2b3a93</originalsourceid><addsrcrecordid>eNp9kMtKAzEUhoMoWC8v4GrA9dSTy1yylKJVqLqwrkMmk0iqTWqSqczbGx3BnWdzOPD9_4EPoQsMcwzQXEUASnkJhJRQcV6V4wGaYUbzWVM4RDPgrClbyutjdBLjBvIwQmZovfKfRdLbnQ4yDUEXymtjrLLapcKbIuhoY7J7m8bCukK6ZDPq9_HNJl08OLqUMG-eHczpY85ud35w_Rk6MvI96vPffYpebm_Wi7ty9bS8X1yvSkVaksqGd1R1WHLZEoyblvYSK9kRwqoGDNZKYqOINFC3lOG-Z5QxxWrGWkk6Kjk9RZdT7y74j0HHJDZ-CC6_FKQBThlUDGeKTJQKPsagjdgFu5VhFBjEtz0x2RPZnvixJ8YcolMoZti96vBX_U_qCzFMcqM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2709340541</pqid></control><display><type>article</type><title>Low temperature coefficient of resistivity in antiperovskite Mn3Ga0.7Sn0.3N compound</title><source>Springer Nature</source><creator>Dai, Yongjuan ; Wu, Xiangxiang ; Guo, Dong ; Sun, Zhonghua</creator><creatorcontrib>Dai, Yongjuan ; Wu, Xiangxiang ; Guo, Dong ; Sun, Zhonghua</creatorcontrib><description>An antiperovskite Mn
3
Ga
0.7
Sn
0.3
N compound was prepared by solid-state reaction. Temperature coefficient of electronic resistivity, magnetic property and thermal property dependent of temperature were characterized. Low temperature coefficient resistivity was first found in antiperovskite Mn
3
GaN class materials. The Mn
3
Ga
0.7
Sn
0.3
N compound showed low temperature coefficient of resistivity and the dρ/dT and TCR value in the measured temperature range 373–400 K is − 2.05 × 10
−10
Ωm/K and − 63 ppm.K
−1
, respectively. A weak antiferromagnetic to ferromagnetic transition is corresponding to the abrupt change of resistivity and pronounced decrease of the lattice parameter. Both the magnetic transition and large lattice contraction have a great effect on the electronic structure, which is the key to understand the mechanism of the peculiar low TCR. Although the origin of low TCR needs to be confirmed by further exploration, the current result will be helpful to explore more novel materials of low TCR and clarify physical mechanism behind it.</description><identifier>ISSN: 0947-8396</identifier><identifier>EISSN: 1432-0630</identifier><identifier>DOI: 10.1007/s00339-022-05995-y</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Antiferromagnetism ; Applied physics ; Characterization and Evaluation of Materials ; Coefficients ; Condensed Matter Physics ; Electrical resistivity ; Electronic structure ; Ferromagnetism ; Low temperature ; Machines ; Magnetic properties ; Magnetic transitions ; Manufacturing ; Materials science ; Nanotechnology ; Optical and Electronic Materials ; Physics ; Physics and Astronomy ; Processes ; Surfaces and Interfaces ; Temperature dependence ; Thermodynamic properties ; Thin Films</subject><ispartof>Applied physics. A, Materials science & processing, 2022-09, Vol.128 (9), Article 851</ispartof><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH, DE part of Springer Nature 2022. Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c282t-79b3cb1a9a8211783da1cab224570f1eca1fc2af068341dd4344c46448a2b3a93</citedby><cites>FETCH-LOGICAL-c282t-79b3cb1a9a8211783da1cab224570f1eca1fc2af068341dd4344c46448a2b3a93</cites><orcidid>0000-0002-2934-2130</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Dai, Yongjuan</creatorcontrib><creatorcontrib>Wu, Xiangxiang</creatorcontrib><creatorcontrib>Guo, Dong</creatorcontrib><creatorcontrib>Sun, Zhonghua</creatorcontrib><title>Low temperature coefficient of resistivity in antiperovskite Mn3Ga0.7Sn0.3N compound</title><title>Applied physics. A, Materials science & processing</title><addtitle>Appl. Phys. A</addtitle><description>An antiperovskite Mn
3
Ga
0.7
Sn
0.3
N compound was prepared by solid-state reaction. Temperature coefficient of electronic resistivity, magnetic property and thermal property dependent of temperature were characterized. Low temperature coefficient resistivity was first found in antiperovskite Mn
3
GaN class materials. The Mn
3
Ga
0.7
Sn
0.3
N compound showed low temperature coefficient of resistivity and the dρ/dT and TCR value in the measured temperature range 373–400 K is − 2.05 × 10
−10
Ωm/K and − 63 ppm.K
−1
, respectively. A weak antiferromagnetic to ferromagnetic transition is corresponding to the abrupt change of resistivity and pronounced decrease of the lattice parameter. Both the magnetic transition and large lattice contraction have a great effect on the electronic structure, which is the key to understand the mechanism of the peculiar low TCR. Although the origin of low TCR needs to be confirmed by further exploration, the current result will be helpful to explore more novel materials of low TCR and clarify physical mechanism behind it.</description><subject>Antiferromagnetism</subject><subject>Applied physics</subject><subject>Characterization and Evaluation of Materials</subject><subject>Coefficients</subject><subject>Condensed Matter Physics</subject><subject>Electrical resistivity</subject><subject>Electronic structure</subject><subject>Ferromagnetism</subject><subject>Low temperature</subject><subject>Machines</subject><subject>Magnetic properties</subject><subject>Magnetic transitions</subject><subject>Manufacturing</subject><subject>Materials science</subject><subject>Nanotechnology</subject><subject>Optical and Electronic Materials</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Processes</subject><subject>Surfaces and Interfaces</subject><subject>Temperature dependence</subject><subject>Thermodynamic properties</subject><subject>Thin Films</subject><issn>0947-8396</issn><issn>1432-0630</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kMtKAzEUhoMoWC8v4GrA9dSTy1yylKJVqLqwrkMmk0iqTWqSqczbGx3BnWdzOPD9_4EPoQsMcwzQXEUASnkJhJRQcV6V4wGaYUbzWVM4RDPgrClbyutjdBLjBvIwQmZovfKfRdLbnQ4yDUEXymtjrLLapcKbIuhoY7J7m8bCukK6ZDPq9_HNJl08OLqUMG-eHczpY85ud35w_Rk6MvI96vPffYpebm_Wi7ty9bS8X1yvSkVaksqGd1R1WHLZEoyblvYSK9kRwqoGDNZKYqOINFC3lOG-Z5QxxWrGWkk6Kjk9RZdT7y74j0HHJDZ-CC6_FKQBThlUDGeKTJQKPsagjdgFu5VhFBjEtz0x2RPZnvixJ8YcolMoZti96vBX_U_qCzFMcqM</recordid><startdate>20220901</startdate><enddate>20220901</enddate><creator>Dai, Yongjuan</creator><creator>Wu, Xiangxiang</creator><creator>Guo, Dong</creator><creator>Sun, Zhonghua</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-2934-2130</orcidid></search><sort><creationdate>20220901</creationdate><title>Low temperature coefficient of resistivity in antiperovskite Mn3Ga0.7Sn0.3N compound</title><author>Dai, Yongjuan ; Wu, Xiangxiang ; Guo, Dong ; Sun, Zhonghua</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c282t-79b3cb1a9a8211783da1cab224570f1eca1fc2af068341dd4344c46448a2b3a93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Antiferromagnetism</topic><topic>Applied physics</topic><topic>Characterization and Evaluation of Materials</topic><topic>Coefficients</topic><topic>Condensed Matter Physics</topic><topic>Electrical resistivity</topic><topic>Electronic structure</topic><topic>Ferromagnetism</topic><topic>Low temperature</topic><topic>Machines</topic><topic>Magnetic properties</topic><topic>Magnetic transitions</topic><topic>Manufacturing</topic><topic>Materials science</topic><topic>Nanotechnology</topic><topic>Optical and Electronic Materials</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Processes</topic><topic>Surfaces and Interfaces</topic><topic>Temperature dependence</topic><topic>Thermodynamic properties</topic><topic>Thin Films</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dai, Yongjuan</creatorcontrib><creatorcontrib>Wu, Xiangxiang</creatorcontrib><creatorcontrib>Guo, Dong</creatorcontrib><creatorcontrib>Sun, Zhonghua</creatorcontrib><collection>CrossRef</collection><jtitle>Applied physics. A, Materials science & processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dai, Yongjuan</au><au>Wu, Xiangxiang</au><au>Guo, Dong</au><au>Sun, Zhonghua</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Low temperature coefficient of resistivity in antiperovskite Mn3Ga0.7Sn0.3N compound</atitle><jtitle>Applied physics. A, Materials science & processing</jtitle><stitle>Appl. Phys. A</stitle><date>2022-09-01</date><risdate>2022</risdate><volume>128</volume><issue>9</issue><artnum>851</artnum><issn>0947-8396</issn><eissn>1432-0630</eissn><abstract>An antiperovskite Mn
3
Ga
0.7
Sn
0.3
N compound was prepared by solid-state reaction. Temperature coefficient of electronic resistivity, magnetic property and thermal property dependent of temperature were characterized. Low temperature coefficient resistivity was first found in antiperovskite Mn
3
GaN class materials. The Mn
3
Ga
0.7
Sn
0.3
N compound showed low temperature coefficient of resistivity and the dρ/dT and TCR value in the measured temperature range 373–400 K is − 2.05 × 10
−10
Ωm/K and − 63 ppm.K
−1
, respectively. A weak antiferromagnetic to ferromagnetic transition is corresponding to the abrupt change of resistivity and pronounced decrease of the lattice parameter. Both the magnetic transition and large lattice contraction have a great effect on the electronic structure, which is the key to understand the mechanism of the peculiar low TCR. Although the origin of low TCR needs to be confirmed by further exploration, the current result will be helpful to explore more novel materials of low TCR and clarify physical mechanism behind it.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00339-022-05995-y</doi><orcidid>https://orcid.org/0000-0002-2934-2130</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0947-8396 |
ispartof | Applied physics. A, Materials science & processing, 2022-09, Vol.128 (9), Article 851 |
issn | 0947-8396 1432-0630 |
language | eng |
recordid | cdi_proquest_journals_2709340541 |
source | Springer Nature |
subjects | Antiferromagnetism Applied physics Characterization and Evaluation of Materials Coefficients Condensed Matter Physics Electrical resistivity Electronic structure Ferromagnetism Low temperature Machines Magnetic properties Magnetic transitions Manufacturing Materials science Nanotechnology Optical and Electronic Materials Physics Physics and Astronomy Processes Surfaces and Interfaces Temperature dependence Thermodynamic properties Thin Films |
title | Low temperature coefficient of resistivity in antiperovskite Mn3Ga0.7Sn0.3N compound |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T08%3A05%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Low%20temperature%20coefficient%20of%20resistivity%20in%20antiperovskite%20Mn3Ga0.7Sn0.3N%20compound&rft.jtitle=Applied%20physics.%20A,%20Materials%20science%20&%20processing&rft.au=Dai,%20Yongjuan&rft.date=2022-09-01&rft.volume=128&rft.issue=9&rft.artnum=851&rft.issn=0947-8396&rft.eissn=1432-0630&rft_id=info:doi/10.1007/s00339-022-05995-y&rft_dat=%3Cproquest_cross%3E2709340541%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c282t-79b3cb1a9a8211783da1cab224570f1eca1fc2af068341dd4344c46448a2b3a93%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2709340541&rft_id=info:pmid/&rfr_iscdi=true |