Loading…

Low temperature coefficient of resistivity in antiperovskite Mn3Ga0.7Sn0.3N compound

An antiperovskite Mn 3 Ga 0.7 Sn 0.3 N compound was prepared by solid-state reaction. Temperature coefficient of electronic resistivity, magnetic property and thermal property dependent of temperature were characterized. Low temperature coefficient resistivity was first found in antiperovskite Mn 3...

Full description

Saved in:
Bibliographic Details
Published in:Applied physics. A, Materials science & processing Materials science & processing, 2022-09, Vol.128 (9), Article 851
Main Authors: Dai, Yongjuan, Wu, Xiangxiang, Guo, Dong, Sun, Zhonghua
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c282t-79b3cb1a9a8211783da1cab224570f1eca1fc2af068341dd4344c46448a2b3a93
cites cdi_FETCH-LOGICAL-c282t-79b3cb1a9a8211783da1cab224570f1eca1fc2af068341dd4344c46448a2b3a93
container_end_page
container_issue 9
container_start_page
container_title Applied physics. A, Materials science & processing
container_volume 128
creator Dai, Yongjuan
Wu, Xiangxiang
Guo, Dong
Sun, Zhonghua
description An antiperovskite Mn 3 Ga 0.7 Sn 0.3 N compound was prepared by solid-state reaction. Temperature coefficient of electronic resistivity, magnetic property and thermal property dependent of temperature were characterized. Low temperature coefficient resistivity was first found in antiperovskite Mn 3 GaN class materials. The Mn 3 Ga 0.7 Sn 0.3 N compound showed low temperature coefficient of resistivity and the dρ/dT and TCR value in the measured temperature range 373–400 K is − 2.05 × 10 −10 Ωm/K and − 63 ppm.K −1 , respectively. A weak antiferromagnetic to ferromagnetic transition is corresponding to the abrupt change of resistivity and pronounced decrease of the lattice parameter. Both the magnetic transition and large lattice contraction have a great effect on the electronic structure, which is the key to understand the mechanism of the peculiar low TCR. Although the origin of low TCR needs to be confirmed by further exploration, the current result will be helpful to explore more novel materials of low TCR and clarify physical mechanism behind it.
doi_str_mv 10.1007/s00339-022-05995-y
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2709340541</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2709340541</sourcerecordid><originalsourceid>FETCH-LOGICAL-c282t-79b3cb1a9a8211783da1cab224570f1eca1fc2af068341dd4344c46448a2b3a93</originalsourceid><addsrcrecordid>eNp9kMtKAzEUhoMoWC8v4GrA9dSTy1yylKJVqLqwrkMmk0iqTWqSqczbGx3BnWdzOPD9_4EPoQsMcwzQXEUASnkJhJRQcV6V4wGaYUbzWVM4RDPgrClbyutjdBLjBvIwQmZovfKfRdLbnQ4yDUEXymtjrLLapcKbIuhoY7J7m8bCukK6ZDPq9_HNJl08OLqUMG-eHczpY85ud35w_Rk6MvI96vPffYpebm_Wi7ty9bS8X1yvSkVaksqGd1R1WHLZEoyblvYSK9kRwqoGDNZKYqOINFC3lOG-Z5QxxWrGWkk6Kjk9RZdT7y74j0HHJDZ-CC6_FKQBThlUDGeKTJQKPsagjdgFu5VhFBjEtz0x2RPZnvixJ8YcolMoZti96vBX_U_qCzFMcqM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2709340541</pqid></control><display><type>article</type><title>Low temperature coefficient of resistivity in antiperovskite Mn3Ga0.7Sn0.3N compound</title><source>Springer Nature</source><creator>Dai, Yongjuan ; Wu, Xiangxiang ; Guo, Dong ; Sun, Zhonghua</creator><creatorcontrib>Dai, Yongjuan ; Wu, Xiangxiang ; Guo, Dong ; Sun, Zhonghua</creatorcontrib><description>An antiperovskite Mn 3 Ga 0.7 Sn 0.3 N compound was prepared by solid-state reaction. Temperature coefficient of electronic resistivity, magnetic property and thermal property dependent of temperature were characterized. Low temperature coefficient resistivity was first found in antiperovskite Mn 3 GaN class materials. The Mn 3 Ga 0.7 Sn 0.3 N compound showed low temperature coefficient of resistivity and the dρ/dT and TCR value in the measured temperature range 373–400 K is − 2.05 × 10 −10 Ωm/K and − 63 ppm.K −1 , respectively. A weak antiferromagnetic to ferromagnetic transition is corresponding to the abrupt change of resistivity and pronounced decrease of the lattice parameter. Both the magnetic transition and large lattice contraction have a great effect on the electronic structure, which is the key to understand the mechanism of the peculiar low TCR. Although the origin of low TCR needs to be confirmed by further exploration, the current result will be helpful to explore more novel materials of low TCR and clarify physical mechanism behind it.</description><identifier>ISSN: 0947-8396</identifier><identifier>EISSN: 1432-0630</identifier><identifier>DOI: 10.1007/s00339-022-05995-y</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Antiferromagnetism ; Applied physics ; Characterization and Evaluation of Materials ; Coefficients ; Condensed Matter Physics ; Electrical resistivity ; Electronic structure ; Ferromagnetism ; Low temperature ; Machines ; Magnetic properties ; Magnetic transitions ; Manufacturing ; Materials science ; Nanotechnology ; Optical and Electronic Materials ; Physics ; Physics and Astronomy ; Processes ; Surfaces and Interfaces ; Temperature dependence ; Thermodynamic properties ; Thin Films</subject><ispartof>Applied physics. A, Materials science &amp; processing, 2022-09, Vol.128 (9), Article 851</ispartof><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH, DE part of Springer Nature 2022. Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c282t-79b3cb1a9a8211783da1cab224570f1eca1fc2af068341dd4344c46448a2b3a93</citedby><cites>FETCH-LOGICAL-c282t-79b3cb1a9a8211783da1cab224570f1eca1fc2af068341dd4344c46448a2b3a93</cites><orcidid>0000-0002-2934-2130</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Dai, Yongjuan</creatorcontrib><creatorcontrib>Wu, Xiangxiang</creatorcontrib><creatorcontrib>Guo, Dong</creatorcontrib><creatorcontrib>Sun, Zhonghua</creatorcontrib><title>Low temperature coefficient of resistivity in antiperovskite Mn3Ga0.7Sn0.3N compound</title><title>Applied physics. A, Materials science &amp; processing</title><addtitle>Appl. Phys. A</addtitle><description>An antiperovskite Mn 3 Ga 0.7 Sn 0.3 N compound was prepared by solid-state reaction. Temperature coefficient of electronic resistivity, magnetic property and thermal property dependent of temperature were characterized. Low temperature coefficient resistivity was first found in antiperovskite Mn 3 GaN class materials. The Mn 3 Ga 0.7 Sn 0.3 N compound showed low temperature coefficient of resistivity and the dρ/dT and TCR value in the measured temperature range 373–400 K is − 2.05 × 10 −10 Ωm/K and − 63 ppm.K −1 , respectively. A weak antiferromagnetic to ferromagnetic transition is corresponding to the abrupt change of resistivity and pronounced decrease of the lattice parameter. Both the magnetic transition and large lattice contraction have a great effect on the electronic structure, which is the key to understand the mechanism of the peculiar low TCR. Although the origin of low TCR needs to be confirmed by further exploration, the current result will be helpful to explore more novel materials of low TCR and clarify physical mechanism behind it.</description><subject>Antiferromagnetism</subject><subject>Applied physics</subject><subject>Characterization and Evaluation of Materials</subject><subject>Coefficients</subject><subject>Condensed Matter Physics</subject><subject>Electrical resistivity</subject><subject>Electronic structure</subject><subject>Ferromagnetism</subject><subject>Low temperature</subject><subject>Machines</subject><subject>Magnetic properties</subject><subject>Magnetic transitions</subject><subject>Manufacturing</subject><subject>Materials science</subject><subject>Nanotechnology</subject><subject>Optical and Electronic Materials</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Processes</subject><subject>Surfaces and Interfaces</subject><subject>Temperature dependence</subject><subject>Thermodynamic properties</subject><subject>Thin Films</subject><issn>0947-8396</issn><issn>1432-0630</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kMtKAzEUhoMoWC8v4GrA9dSTy1yylKJVqLqwrkMmk0iqTWqSqczbGx3BnWdzOPD9_4EPoQsMcwzQXEUASnkJhJRQcV6V4wGaYUbzWVM4RDPgrClbyutjdBLjBvIwQmZovfKfRdLbnQ4yDUEXymtjrLLapcKbIuhoY7J7m8bCukK6ZDPq9_HNJl08OLqUMG-eHczpY85ud35w_Rk6MvI96vPffYpebm_Wi7ty9bS8X1yvSkVaksqGd1R1WHLZEoyblvYSK9kRwqoGDNZKYqOINFC3lOG-Z5QxxWrGWkk6Kjk9RZdT7y74j0HHJDZ-CC6_FKQBThlUDGeKTJQKPsagjdgFu5VhFBjEtz0x2RPZnvixJ8YcolMoZti96vBX_U_qCzFMcqM</recordid><startdate>20220901</startdate><enddate>20220901</enddate><creator>Dai, Yongjuan</creator><creator>Wu, Xiangxiang</creator><creator>Guo, Dong</creator><creator>Sun, Zhonghua</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-2934-2130</orcidid></search><sort><creationdate>20220901</creationdate><title>Low temperature coefficient of resistivity in antiperovskite Mn3Ga0.7Sn0.3N compound</title><author>Dai, Yongjuan ; Wu, Xiangxiang ; Guo, Dong ; Sun, Zhonghua</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c282t-79b3cb1a9a8211783da1cab224570f1eca1fc2af068341dd4344c46448a2b3a93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Antiferromagnetism</topic><topic>Applied physics</topic><topic>Characterization and Evaluation of Materials</topic><topic>Coefficients</topic><topic>Condensed Matter Physics</topic><topic>Electrical resistivity</topic><topic>Electronic structure</topic><topic>Ferromagnetism</topic><topic>Low temperature</topic><topic>Machines</topic><topic>Magnetic properties</topic><topic>Magnetic transitions</topic><topic>Manufacturing</topic><topic>Materials science</topic><topic>Nanotechnology</topic><topic>Optical and Electronic Materials</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Processes</topic><topic>Surfaces and Interfaces</topic><topic>Temperature dependence</topic><topic>Thermodynamic properties</topic><topic>Thin Films</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dai, Yongjuan</creatorcontrib><creatorcontrib>Wu, Xiangxiang</creatorcontrib><creatorcontrib>Guo, Dong</creatorcontrib><creatorcontrib>Sun, Zhonghua</creatorcontrib><collection>CrossRef</collection><jtitle>Applied physics. A, Materials science &amp; processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dai, Yongjuan</au><au>Wu, Xiangxiang</au><au>Guo, Dong</au><au>Sun, Zhonghua</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Low temperature coefficient of resistivity in antiperovskite Mn3Ga0.7Sn0.3N compound</atitle><jtitle>Applied physics. A, Materials science &amp; processing</jtitle><stitle>Appl. Phys. A</stitle><date>2022-09-01</date><risdate>2022</risdate><volume>128</volume><issue>9</issue><artnum>851</artnum><issn>0947-8396</issn><eissn>1432-0630</eissn><abstract>An antiperovskite Mn 3 Ga 0.7 Sn 0.3 N compound was prepared by solid-state reaction. Temperature coefficient of electronic resistivity, magnetic property and thermal property dependent of temperature were characterized. Low temperature coefficient resistivity was first found in antiperovskite Mn 3 GaN class materials. The Mn 3 Ga 0.7 Sn 0.3 N compound showed low temperature coefficient of resistivity and the dρ/dT and TCR value in the measured temperature range 373–400 K is − 2.05 × 10 −10 Ωm/K and − 63 ppm.K −1 , respectively. A weak antiferromagnetic to ferromagnetic transition is corresponding to the abrupt change of resistivity and pronounced decrease of the lattice parameter. Both the magnetic transition and large lattice contraction have a great effect on the electronic structure, which is the key to understand the mechanism of the peculiar low TCR. Although the origin of low TCR needs to be confirmed by further exploration, the current result will be helpful to explore more novel materials of low TCR and clarify physical mechanism behind it.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00339-022-05995-y</doi><orcidid>https://orcid.org/0000-0002-2934-2130</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0947-8396
ispartof Applied physics. A, Materials science & processing, 2022-09, Vol.128 (9), Article 851
issn 0947-8396
1432-0630
language eng
recordid cdi_proquest_journals_2709340541
source Springer Nature
subjects Antiferromagnetism
Applied physics
Characterization and Evaluation of Materials
Coefficients
Condensed Matter Physics
Electrical resistivity
Electronic structure
Ferromagnetism
Low temperature
Machines
Magnetic properties
Magnetic transitions
Manufacturing
Materials science
Nanotechnology
Optical and Electronic Materials
Physics
Physics and Astronomy
Processes
Surfaces and Interfaces
Temperature dependence
Thermodynamic properties
Thin Films
title Low temperature coefficient of resistivity in antiperovskite Mn3Ga0.7Sn0.3N compound
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T08%3A05%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Low%20temperature%20coefficient%20of%20resistivity%20in%20antiperovskite%20Mn3Ga0.7Sn0.3N%20compound&rft.jtitle=Applied%20physics.%20A,%20Materials%20science%20&%20processing&rft.au=Dai,%20Yongjuan&rft.date=2022-09-01&rft.volume=128&rft.issue=9&rft.artnum=851&rft.issn=0947-8396&rft.eissn=1432-0630&rft_id=info:doi/10.1007/s00339-022-05995-y&rft_dat=%3Cproquest_cross%3E2709340541%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c282t-79b3cb1a9a8211783da1cab224570f1eca1fc2af068341dd4344c46448a2b3a93%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2709340541&rft_id=info:pmid/&rfr_iscdi=true