Loading…

Effect of exponential heat source on parabolic flow of three different non-Newtonian fluids

This study examined the flow and thermal transfer feature of MHD (magnetohydrodynamic) Casson, Carreau, and Williamson fluid movements over a parabolic extending region with exponential heat generation effect. The mathematical model is transformed into Ordinary Differential Equations (ODEs) by utili...

Full description

Saved in:
Bibliographic Details
Published in:Proceedings of the Institution of Mechanical Engineers. Part E, Journal of process mechanical engineering Journal of process mechanical engineering, 2022-10, Vol.236 (5), p.2131-2138
Main Authors: Samrat, SP, Gangadharaiah, YH, Ashwinkumar, GP, Sandeep, N
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:This study examined the flow and thermal transfer feature of MHD (magnetohydrodynamic) Casson, Carreau, and Williamson fluid movements over a parabolic extending region with exponential heat generation effect. The mathematical model is transformed into Ordinary Differential Equations (ODEs) by utilizing appropriate similarity variables and resolved using bvp5c Matlab package. The influence of applicable limits on transfer facts is illustrated via plots and tabular values. The current study outcomes reveal the comparisons of flow, thermal profiles, wall friction, and local Nusselt number of these (Casson, Carreau, and Williamson) different non-Newtonian liquids. Casson fluid shows more excellent thermal conductivity when compared to Carreau and Williamson fluids and observed that the drive and thermal gradient of three non-Newtonian fluids are not uniform. Also, the magnetic force tends to condense the stream and thermal transport rate of these three fluids. The rate of thermal transport is amplified by growing the magnitude of Prandtl and exponential parameters.
ISSN:0954-4089
2041-3009
DOI:10.1177/09544089221083468