Loading…
Precipitation behaviors and property variations of Cu-3.0 wt% Ti fabricated by a novel short-processing non-vacuum heating-cooling combined mold continuous casting
A Cu-3.0 wt% Ti alloy is fabricated by a novel non-vacuum short-process based on heating-cooling combined mold (HCCM) continuous casting in this study. Similar properties including tensile strength, hardness and electrical conductivity are obtained by this newly developed process, compared to its co...
Saved in:
Published in: | Journal of alloys and compounds 2022-11, Vol.921, p.166059, Article 166059 |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | A Cu-3.0 wt% Ti alloy is fabricated by a novel non-vacuum short-process based on heating-cooling combined mold (HCCM) continuous casting in this study. Similar properties including tensile strength, hardness and electrical conductivity are obtained by this newly developed process, compared to its counterpart alloy prepared by conventional vacuum smelting. The tensile strength, total elongation and conductivity of the HCCM prepared Cu-3 wt% Ti alloy were 895 MPa, 13% and 13.00% IACS, respectively, after 95% deformation and aging treatment at 450 °C for 1 h. The cast materials fabricated by HCCM method can be directly cold rolled and aged after solution treatment without hot deformation such as hot forging. Through the HCCM continuous casting method, not only the Cu-Ti alloy can be fabricated under non-vacuum conditions, but also the fabrication process can apparently shortened by shortening the solid solution treatment time. Similar precipitation process is also found in the Cu-3.0 wt% Ti alloy prepared by this method. The precipitation of the ordered, metastable and coherent β'-Cu4Ti phase with body-centered tetragonal (bct) structure are formed in the early stage of aging treatment, which is transformed into stable β-Cu3Ti with an orthogonal structure in the over-aging stage. The precipitation hardening of β'-Cu4Ti phase, i.e., Orowan strengthening effect, is believed to be the leading strengthening mechanism in this alloy.
[Display omitted]
•Cu-3 wt% Ti alloy with high properties was prepared without vacuum for the first time.•New process without hot deformation was developed to improve yield and economy.•Solid solution time was significantly shortened by HCCM continuous casting. |
---|---|
ISSN: | 0925-8388 1873-4669 |
DOI: | 10.1016/j.jallcom.2022.166059 |