Loading…
The static energy of a quark-antiquark pair from Laplacian eigenmodes
We test a method for computing the static quark-antiquark potential in lattice QCD, which is not based on Wilson loops, but where the trial states are formed by eigenvector components of the covariant lattice Laplace operator. The runtime of this method is significantly smaller than the standard Wil...
Saved in:
Published in: | arXiv.org 2022-09 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | |
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Höllwieser, Roman Knechtli, Francesco Peardon, Mike |
description | We test a method for computing the static quark-antiquark potential in lattice QCD, which is not based on Wilson loops, but where the trial states are formed by eigenvector components of the covariant lattice Laplace operator. The runtime of this method is significantly smaller than the standard Wilson loop calculation, when computing the static potential not only for on-axis, but also for many off-axis quark-antiquark separations, i.e., when a fine spatial resolution is required. We further improve the signal by using multiple eigenvector pairs, weighted with Gaussian profile functions of the eigenvalues, providing a basis for a generalized eigenvalue problem (GEVP), as it was recently introduced to improve distillation in meson spectroscopy. We show results with the new method for the static potential with dynamical fermions and demonstrate its efficiency compared to traditional Wilson loop calculations. The method presented here can also be applied to compute hybrid or tetra-quark potentials and to static-light systems. |
format | article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2711100167</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2711100167</sourcerecordid><originalsourceid>FETCH-proquest_journals_27111001673</originalsourceid><addsrcrecordid>eNqNiksKwjAUAIMgWLR3eOC6kE8_7qXiwmX35VFfamqbtEm68PaKeABXMzCzYYlUSmSnXModS0MYOOeyrGRRqITVzYMgRIymA7Lk-xc4DQjLiv6ZoY3mazCj8aC9m-CG84idQQtkerKTu1M4sK3GMVD6454dL3Vzvmazd8tKIbaDW739pFZWQgjORVmp_643YCw6rQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2711100167</pqid></control><display><type>article</type><title>The static energy of a quark-antiquark pair from Laplacian eigenmodes</title><source>Publicly Available Content (ProQuest)</source><creator>Höllwieser, Roman ; Knechtli, Francesco ; Peardon, Mike</creator><creatorcontrib>Höllwieser, Roman ; Knechtli, Francesco ; Peardon, Mike</creatorcontrib><description>We test a method for computing the static quark-antiquark potential in lattice QCD, which is not based on Wilson loops, but where the trial states are formed by eigenvector components of the covariant lattice Laplace operator. The runtime of this method is significantly smaller than the standard Wilson loop calculation, when computing the static potential not only for on-axis, but also for many off-axis quark-antiquark separations, i.e., when a fine spatial resolution is required. We further improve the signal by using multiple eigenvector pairs, weighted with Gaussian profile functions of the eigenvalues, providing a basis for a generalized eigenvalue problem (GEVP), as it was recently introduced to improve distillation in meson spectroscopy. We show results with the new method for the static potential with dynamical fermions and demonstrate its efficiency compared to traditional Wilson loop calculations. The method presented here can also be applied to compute hybrid or tetra-quark potentials and to static-light systems.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Computation ; Distillation ; Eigenvalues ; Eigenvectors ; Fermions ; Mathematical analysis ; Quantum chromodynamics ; Quarks ; Spatial resolution</subject><ispartof>arXiv.org, 2022-09</ispartof><rights>2022. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2711100167?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>780,784,25744,37003,44581</link.rule.ids></links><search><creatorcontrib>Höllwieser, Roman</creatorcontrib><creatorcontrib>Knechtli, Francesco</creatorcontrib><creatorcontrib>Peardon, Mike</creatorcontrib><title>The static energy of a quark-antiquark pair from Laplacian eigenmodes</title><title>arXiv.org</title><description>We test a method for computing the static quark-antiquark potential in lattice QCD, which is not based on Wilson loops, but where the trial states are formed by eigenvector components of the covariant lattice Laplace operator. The runtime of this method is significantly smaller than the standard Wilson loop calculation, when computing the static potential not only for on-axis, but also for many off-axis quark-antiquark separations, i.e., when a fine spatial resolution is required. We further improve the signal by using multiple eigenvector pairs, weighted with Gaussian profile functions of the eigenvalues, providing a basis for a generalized eigenvalue problem (GEVP), as it was recently introduced to improve distillation in meson spectroscopy. We show results with the new method for the static potential with dynamical fermions and demonstrate its efficiency compared to traditional Wilson loop calculations. The method presented here can also be applied to compute hybrid or tetra-quark potentials and to static-light systems.</description><subject>Computation</subject><subject>Distillation</subject><subject>Eigenvalues</subject><subject>Eigenvectors</subject><subject>Fermions</subject><subject>Mathematical analysis</subject><subject>Quantum chromodynamics</subject><subject>Quarks</subject><subject>Spatial resolution</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNqNiksKwjAUAIMgWLR3eOC6kE8_7qXiwmX35VFfamqbtEm68PaKeABXMzCzYYlUSmSnXModS0MYOOeyrGRRqITVzYMgRIymA7Lk-xc4DQjLiv6ZoY3mazCj8aC9m-CG84idQQtkerKTu1M4sK3GMVD6454dL3Vzvmazd8tKIbaDW739pFZWQgjORVmp_643YCw6rQ</recordid><startdate>20220902</startdate><enddate>20220902</enddate><creator>Höllwieser, Roman</creator><creator>Knechtli, Francesco</creator><creator>Peardon, Mike</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20220902</creationdate><title>The static energy of a quark-antiquark pair from Laplacian eigenmodes</title><author>Höllwieser, Roman ; Knechtli, Francesco ; Peardon, Mike</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_27111001673</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Computation</topic><topic>Distillation</topic><topic>Eigenvalues</topic><topic>Eigenvectors</topic><topic>Fermions</topic><topic>Mathematical analysis</topic><topic>Quantum chromodynamics</topic><topic>Quarks</topic><topic>Spatial resolution</topic><toplevel>online_resources</toplevel><creatorcontrib>Höllwieser, Roman</creatorcontrib><creatorcontrib>Knechtli, Francesco</creatorcontrib><creatorcontrib>Peardon, Mike</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Höllwieser, Roman</au><au>Knechtli, Francesco</au><au>Peardon, Mike</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>The static energy of a quark-antiquark pair from Laplacian eigenmodes</atitle><jtitle>arXiv.org</jtitle><date>2022-09-02</date><risdate>2022</risdate><eissn>2331-8422</eissn><abstract>We test a method for computing the static quark-antiquark potential in lattice QCD, which is not based on Wilson loops, but where the trial states are formed by eigenvector components of the covariant lattice Laplace operator. The runtime of this method is significantly smaller than the standard Wilson loop calculation, when computing the static potential not only for on-axis, but also for many off-axis quark-antiquark separations, i.e., when a fine spatial resolution is required. We further improve the signal by using multiple eigenvector pairs, weighted with Gaussian profile functions of the eigenvalues, providing a basis for a generalized eigenvalue problem (GEVP), as it was recently introduced to improve distillation in meson spectroscopy. We show results with the new method for the static potential with dynamical fermions and demonstrate its efficiency compared to traditional Wilson loop calculations. The method presented here can also be applied to compute hybrid or tetra-quark potentials and to static-light systems.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2022-09 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2711100167 |
source | Publicly Available Content (ProQuest) |
subjects | Computation Distillation Eigenvalues Eigenvectors Fermions Mathematical analysis Quantum chromodynamics Quarks Spatial resolution |
title | The static energy of a quark-antiquark pair from Laplacian eigenmodes |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T23%3A55%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=The%20static%20energy%20of%20a%20quark-antiquark%20pair%20from%20Laplacian%20eigenmodes&rft.jtitle=arXiv.org&rft.au=H%C3%B6llwieser,%20Roman&rft.date=2022-09-02&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2711100167%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-proquest_journals_27111001673%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2711100167&rft_id=info:pmid/&rfr_iscdi=true |