Loading…

The static energy of a quark-antiquark pair from Laplacian eigenmodes

We test a method for computing the static quark-antiquark potential in lattice QCD, which is not based on Wilson loops, but where the trial states are formed by eigenvector components of the covariant lattice Laplace operator. The runtime of this method is significantly smaller than the standard Wil...

Full description

Saved in:
Bibliographic Details
Published in:arXiv.org 2022-09
Main Authors: Höllwieser, Roman, Knechtli, Francesco, Peardon, Mike
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Höllwieser, Roman
Knechtli, Francesco
Peardon, Mike
description We test a method for computing the static quark-antiquark potential in lattice QCD, which is not based on Wilson loops, but where the trial states are formed by eigenvector components of the covariant lattice Laplace operator. The runtime of this method is significantly smaller than the standard Wilson loop calculation, when computing the static potential not only for on-axis, but also for many off-axis quark-antiquark separations, i.e., when a fine spatial resolution is required. We further improve the signal by using multiple eigenvector pairs, weighted with Gaussian profile functions of the eigenvalues, providing a basis for a generalized eigenvalue problem (GEVP), as it was recently introduced to improve distillation in meson spectroscopy. We show results with the new method for the static potential with dynamical fermions and demonstrate its efficiency compared to traditional Wilson loop calculations. The method presented here can also be applied to compute hybrid or tetra-quark potentials and to static-light systems.
format article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2711100167</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2711100167</sourcerecordid><originalsourceid>FETCH-proquest_journals_27111001673</originalsourceid><addsrcrecordid>eNqNiksKwjAUAIMgWLR3eOC6kE8_7qXiwmX35VFfamqbtEm68PaKeABXMzCzYYlUSmSnXModS0MYOOeyrGRRqITVzYMgRIymA7Lk-xc4DQjLiv6ZoY3mazCj8aC9m-CG84idQQtkerKTu1M4sK3GMVD6454dL3Vzvmazd8tKIbaDW739pFZWQgjORVmp_643YCw6rQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2711100167</pqid></control><display><type>article</type><title>The static energy of a quark-antiquark pair from Laplacian eigenmodes</title><source>Publicly Available Content (ProQuest)</source><creator>Höllwieser, Roman ; Knechtli, Francesco ; Peardon, Mike</creator><creatorcontrib>Höllwieser, Roman ; Knechtli, Francesco ; Peardon, Mike</creatorcontrib><description>We test a method for computing the static quark-antiquark potential in lattice QCD, which is not based on Wilson loops, but where the trial states are formed by eigenvector components of the covariant lattice Laplace operator. The runtime of this method is significantly smaller than the standard Wilson loop calculation, when computing the static potential not only for on-axis, but also for many off-axis quark-antiquark separations, i.e., when a fine spatial resolution is required. We further improve the signal by using multiple eigenvector pairs, weighted with Gaussian profile functions of the eigenvalues, providing a basis for a generalized eigenvalue problem (GEVP), as it was recently introduced to improve distillation in meson spectroscopy. We show results with the new method for the static potential with dynamical fermions and demonstrate its efficiency compared to traditional Wilson loop calculations. The method presented here can also be applied to compute hybrid or tetra-quark potentials and to static-light systems.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Computation ; Distillation ; Eigenvalues ; Eigenvectors ; Fermions ; Mathematical analysis ; Quantum chromodynamics ; Quarks ; Spatial resolution</subject><ispartof>arXiv.org, 2022-09</ispartof><rights>2022. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2711100167?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>780,784,25744,37003,44581</link.rule.ids></links><search><creatorcontrib>Höllwieser, Roman</creatorcontrib><creatorcontrib>Knechtli, Francesco</creatorcontrib><creatorcontrib>Peardon, Mike</creatorcontrib><title>The static energy of a quark-antiquark pair from Laplacian eigenmodes</title><title>arXiv.org</title><description>We test a method for computing the static quark-antiquark potential in lattice QCD, which is not based on Wilson loops, but where the trial states are formed by eigenvector components of the covariant lattice Laplace operator. The runtime of this method is significantly smaller than the standard Wilson loop calculation, when computing the static potential not only for on-axis, but also for many off-axis quark-antiquark separations, i.e., when a fine spatial resolution is required. We further improve the signal by using multiple eigenvector pairs, weighted with Gaussian profile functions of the eigenvalues, providing a basis for a generalized eigenvalue problem (GEVP), as it was recently introduced to improve distillation in meson spectroscopy. We show results with the new method for the static potential with dynamical fermions and demonstrate its efficiency compared to traditional Wilson loop calculations. The method presented here can also be applied to compute hybrid or tetra-quark potentials and to static-light systems.</description><subject>Computation</subject><subject>Distillation</subject><subject>Eigenvalues</subject><subject>Eigenvectors</subject><subject>Fermions</subject><subject>Mathematical analysis</subject><subject>Quantum chromodynamics</subject><subject>Quarks</subject><subject>Spatial resolution</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNqNiksKwjAUAIMgWLR3eOC6kE8_7qXiwmX35VFfamqbtEm68PaKeABXMzCzYYlUSmSnXModS0MYOOeyrGRRqITVzYMgRIymA7Lk-xc4DQjLiv6ZoY3mazCj8aC9m-CG84idQQtkerKTu1M4sK3GMVD6454dL3Vzvmazd8tKIbaDW739pFZWQgjORVmp_643YCw6rQ</recordid><startdate>20220902</startdate><enddate>20220902</enddate><creator>Höllwieser, Roman</creator><creator>Knechtli, Francesco</creator><creator>Peardon, Mike</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20220902</creationdate><title>The static energy of a quark-antiquark pair from Laplacian eigenmodes</title><author>Höllwieser, Roman ; Knechtli, Francesco ; Peardon, Mike</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_27111001673</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Computation</topic><topic>Distillation</topic><topic>Eigenvalues</topic><topic>Eigenvectors</topic><topic>Fermions</topic><topic>Mathematical analysis</topic><topic>Quantum chromodynamics</topic><topic>Quarks</topic><topic>Spatial resolution</topic><toplevel>online_resources</toplevel><creatorcontrib>Höllwieser, Roman</creatorcontrib><creatorcontrib>Knechtli, Francesco</creatorcontrib><creatorcontrib>Peardon, Mike</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Höllwieser, Roman</au><au>Knechtli, Francesco</au><au>Peardon, Mike</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>The static energy of a quark-antiquark pair from Laplacian eigenmodes</atitle><jtitle>arXiv.org</jtitle><date>2022-09-02</date><risdate>2022</risdate><eissn>2331-8422</eissn><abstract>We test a method for computing the static quark-antiquark potential in lattice QCD, which is not based on Wilson loops, but where the trial states are formed by eigenvector components of the covariant lattice Laplace operator. The runtime of this method is significantly smaller than the standard Wilson loop calculation, when computing the static potential not only for on-axis, but also for many off-axis quark-antiquark separations, i.e., when a fine spatial resolution is required. We further improve the signal by using multiple eigenvector pairs, weighted with Gaussian profile functions of the eigenvalues, providing a basis for a generalized eigenvalue problem (GEVP), as it was recently introduced to improve distillation in meson spectroscopy. We show results with the new method for the static potential with dynamical fermions and demonstrate its efficiency compared to traditional Wilson loop calculations. The method presented here can also be applied to compute hybrid or tetra-quark potentials and to static-light systems.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2022-09
issn 2331-8422
language eng
recordid cdi_proquest_journals_2711100167
source Publicly Available Content (ProQuest)
subjects Computation
Distillation
Eigenvalues
Eigenvectors
Fermions
Mathematical analysis
Quantum chromodynamics
Quarks
Spatial resolution
title The static energy of a quark-antiquark pair from Laplacian eigenmodes
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T23%3A55%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=The%20static%20energy%20of%20a%20quark-antiquark%20pair%20from%20Laplacian%20eigenmodes&rft.jtitle=arXiv.org&rft.au=H%C3%B6llwieser,%20Roman&rft.date=2022-09-02&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2711100167%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-proquest_journals_27111001673%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2711100167&rft_id=info:pmid/&rfr_iscdi=true