Loading…

Observation of Coexisting Dirac Bands and Moiré Flat Bands in Magic-Angle Twisted Trilayer Graphene

Moiré superlattices that consist of two or more layers of two-dimensional materials stacked together with a small twist angle have emerged as a tunable platform to realize various correlated and topological phases, such as Mott insulators, unconventional uperconductivity and quantum anomalous Hall e...

Full description

Saved in:
Bibliographic Details
Published in:arXiv.org 2022-09
Main Authors: Li, Yiwei, Zhang, Shihao, Chen, Fanqiang, Wei, Liyang, Zhang, Zonglin, Xiao, Hanbo, Gao, Han, Chen, Moyu, Liang, Shijun, Ding Pei, Xu, Lixuan, Watanabe, Kenji, Taniguchi, Takashi, Yang, Lexian, Miao, Feng, Liu, Jianpeng, Cheng, Bin, Wang, Meixiao, Chen, Yulin, Liu, Zhongkai
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Li, Yiwei
Zhang, Shihao
Chen, Fanqiang
Wei, Liyang
Zhang, Zonglin
Xiao, Hanbo
Gao, Han
Chen, Moyu
Liang, Shijun
Ding Pei
Xu, Lixuan
Watanabe, Kenji
Taniguchi, Takashi
Yang, Lexian
Miao, Feng
Liu, Jianpeng
Cheng, Bin
Wang, Meixiao
Chen, Yulin
Liu, Zhongkai
description Moiré superlattices that consist of two or more layers of two-dimensional materials stacked together with a small twist angle have emerged as a tunable platform to realize various correlated and topological phases, such as Mott insulators, unconventional uperconductivity and quantum anomalous Hall effect. Recently, the magic-angle twisted trilayer graphene (MATTG) has shown both robust superconductivity similar to magic-angle twisted bilayer graphene (MATBG) and other unique properties, including the Pauli-limit violating and re-entrant superconductivity. These rich properties are deeply rooted in its electronic structure under the influence of distinct moiré potential and mirror symmetry. Here, combining nanometer-scale spatially resolved angle-resolved photoemission spectroscopy (nano-ARPES) and scanning tunneling microscopy/spectroscopy (STM/STS), we systematically measure the yet unexplored band structure of MATTG near charge neutrality. Our measurements reveal the coexistence of the distinct dispersive Dirac band with the emergent moiré flat band, showing nice agreement with the theoretical calculations. These results serve as a stepstone for further understanding of the unconventional superconductivity in MATTG.
doi_str_mv 10.48550/arxiv.2209.02199
format article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2711103584</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2711103584</sourcerecordid><originalsourceid>FETCH-LOGICAL-p719-2c8af6621fb03d73f9ba028ff3c5ebaef94e3dd4dec0da597a1017f0c565b323</originalsourceid><addsrcrecordid>eNotjcFqAjEURUOhULF-QHeBrse-vExmJktrqxYUF3UvbyaJjQwZm4zWflK_oz9WoW7uhQP3XMYeBIzzSil4onj2pzEi6DGg0PqGDVBKkVU54h0bpbQHACxKVEoOmFnXycYT9b4LvHN82tmzT70PO_7iIzX8mYJJ_BJ81fn4-8NnLfVX6gNf0c432STsWss3X5elNXwTfUvfNvJ5pMOHDfae3Tpqkx1de8jeZ6-b6SJbrudv08kyO5RCZ9hU5IoChatBmlI6XRNg5ZxslK3JOp1baUxubAOGlC5JgCgdNKpQtUQ5ZI__1kPsPo829dt9d4zhcrjFUggBUlW5_ANf7Fgs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2711103584</pqid></control><display><type>article</type><title>Observation of Coexisting Dirac Bands and Moiré Flat Bands in Magic-Angle Twisted Trilayer Graphene</title><source>Publicly Available Content Database</source><creator>Li, Yiwei ; Zhang, Shihao ; Chen, Fanqiang ; Wei, Liyang ; Zhang, Zonglin ; Xiao, Hanbo ; Gao, Han ; Chen, Moyu ; Liang, Shijun ; Ding Pei ; Xu, Lixuan ; Watanabe, Kenji ; Taniguchi, Takashi ; Yang, Lexian ; Miao, Feng ; Liu, Jianpeng ; Cheng, Bin ; Wang, Meixiao ; Chen, Yulin ; Liu, Zhongkai</creator><creatorcontrib>Li, Yiwei ; Zhang, Shihao ; Chen, Fanqiang ; Wei, Liyang ; Zhang, Zonglin ; Xiao, Hanbo ; Gao, Han ; Chen, Moyu ; Liang, Shijun ; Ding Pei ; Xu, Lixuan ; Watanabe, Kenji ; Taniguchi, Takashi ; Yang, Lexian ; Miao, Feng ; Liu, Jianpeng ; Cheng, Bin ; Wang, Meixiao ; Chen, Yulin ; Liu, Zhongkai</creatorcontrib><description>Moiré superlattices that consist of two or more layers of two-dimensional materials stacked together with a small twist angle have emerged as a tunable platform to realize various correlated and topological phases, such as Mott insulators, unconventional uperconductivity and quantum anomalous Hall effect. Recently, the magic-angle twisted trilayer graphene (MATTG) has shown both robust superconductivity similar to magic-angle twisted bilayer graphene (MATBG) and other unique properties, including the Pauli-limit violating and re-entrant superconductivity. These rich properties are deeply rooted in its electronic structure under the influence of distinct moiré potential and mirror symmetry. Here, combining nanometer-scale spatially resolved angle-resolved photoemission spectroscopy (nano-ARPES) and scanning tunneling microscopy/spectroscopy (STM/STS), we systematically measure the yet unexplored band structure of MATTG near charge neutrality. Our measurements reveal the coexistence of the distinct dispersive Dirac band with the emergent moiré flat band, showing nice agreement with the theoretical calculations. These results serve as a stepstone for further understanding of the unconventional superconductivity in MATTG.</description><identifier>EISSN: 2331-8422</identifier><identifier>DOI: 10.48550/arxiv.2209.02199</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Bilayers ; Electronic structure ; Graphene ; Insulators ; Photoelectric emission ; Quantum Hall effect ; Scanning tunneling microscopy ; Spectrum analysis ; Superlattices ; Two dimensional materials ; Unconventional superconductivity</subject><ispartof>arXiv.org, 2022-09</ispartof><rights>2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2711103584?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>780,784,25753,27925,37012,44590</link.rule.ids></links><search><creatorcontrib>Li, Yiwei</creatorcontrib><creatorcontrib>Zhang, Shihao</creatorcontrib><creatorcontrib>Chen, Fanqiang</creatorcontrib><creatorcontrib>Wei, Liyang</creatorcontrib><creatorcontrib>Zhang, Zonglin</creatorcontrib><creatorcontrib>Xiao, Hanbo</creatorcontrib><creatorcontrib>Gao, Han</creatorcontrib><creatorcontrib>Chen, Moyu</creatorcontrib><creatorcontrib>Liang, Shijun</creatorcontrib><creatorcontrib>Ding Pei</creatorcontrib><creatorcontrib>Xu, Lixuan</creatorcontrib><creatorcontrib>Watanabe, Kenji</creatorcontrib><creatorcontrib>Taniguchi, Takashi</creatorcontrib><creatorcontrib>Yang, Lexian</creatorcontrib><creatorcontrib>Miao, Feng</creatorcontrib><creatorcontrib>Liu, Jianpeng</creatorcontrib><creatorcontrib>Cheng, Bin</creatorcontrib><creatorcontrib>Wang, Meixiao</creatorcontrib><creatorcontrib>Chen, Yulin</creatorcontrib><creatorcontrib>Liu, Zhongkai</creatorcontrib><title>Observation of Coexisting Dirac Bands and Moiré Flat Bands in Magic-Angle Twisted Trilayer Graphene</title><title>arXiv.org</title><description>Moiré superlattices that consist of two or more layers of two-dimensional materials stacked together with a small twist angle have emerged as a tunable platform to realize various correlated and topological phases, such as Mott insulators, unconventional uperconductivity and quantum anomalous Hall effect. Recently, the magic-angle twisted trilayer graphene (MATTG) has shown both robust superconductivity similar to magic-angle twisted bilayer graphene (MATBG) and other unique properties, including the Pauli-limit violating and re-entrant superconductivity. These rich properties are deeply rooted in its electronic structure under the influence of distinct moiré potential and mirror symmetry. Here, combining nanometer-scale spatially resolved angle-resolved photoemission spectroscopy (nano-ARPES) and scanning tunneling microscopy/spectroscopy (STM/STS), we systematically measure the yet unexplored band structure of MATTG near charge neutrality. Our measurements reveal the coexistence of the distinct dispersive Dirac band with the emergent moiré flat band, showing nice agreement with the theoretical calculations. These results serve as a stepstone for further understanding of the unconventional superconductivity in MATTG.</description><subject>Bilayers</subject><subject>Electronic structure</subject><subject>Graphene</subject><subject>Insulators</subject><subject>Photoelectric emission</subject><subject>Quantum Hall effect</subject><subject>Scanning tunneling microscopy</subject><subject>Spectrum analysis</subject><subject>Superlattices</subject><subject>Two dimensional materials</subject><subject>Unconventional superconductivity</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNotjcFqAjEURUOhULF-QHeBrse-vExmJktrqxYUF3UvbyaJjQwZm4zWflK_oz9WoW7uhQP3XMYeBIzzSil4onj2pzEi6DGg0PqGDVBKkVU54h0bpbQHACxKVEoOmFnXycYT9b4LvHN82tmzT70PO_7iIzX8mYJJ_BJ81fn4-8NnLfVX6gNf0c432STsWss3X5elNXwTfUvfNvJ5pMOHDfae3Tpqkx1de8jeZ6-b6SJbrudv08kyO5RCZ9hU5IoChatBmlI6XRNg5ZxslK3JOp1baUxubAOGlC5JgCgdNKpQtUQ5ZI__1kPsPo829dt9d4zhcrjFUggBUlW5_ANf7Fgs</recordid><startdate>20220908</startdate><enddate>20220908</enddate><creator>Li, Yiwei</creator><creator>Zhang, Shihao</creator><creator>Chen, Fanqiang</creator><creator>Wei, Liyang</creator><creator>Zhang, Zonglin</creator><creator>Xiao, Hanbo</creator><creator>Gao, Han</creator><creator>Chen, Moyu</creator><creator>Liang, Shijun</creator><creator>Ding Pei</creator><creator>Xu, Lixuan</creator><creator>Watanabe, Kenji</creator><creator>Taniguchi, Takashi</creator><creator>Yang, Lexian</creator><creator>Miao, Feng</creator><creator>Liu, Jianpeng</creator><creator>Cheng, Bin</creator><creator>Wang, Meixiao</creator><creator>Chen, Yulin</creator><creator>Liu, Zhongkai</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20220908</creationdate><title>Observation of Coexisting Dirac Bands and Moiré Flat Bands in Magic-Angle Twisted Trilayer Graphene</title><author>Li, Yiwei ; Zhang, Shihao ; Chen, Fanqiang ; Wei, Liyang ; Zhang, Zonglin ; Xiao, Hanbo ; Gao, Han ; Chen, Moyu ; Liang, Shijun ; Ding Pei ; Xu, Lixuan ; Watanabe, Kenji ; Taniguchi, Takashi ; Yang, Lexian ; Miao, Feng ; Liu, Jianpeng ; Cheng, Bin ; Wang, Meixiao ; Chen, Yulin ; Liu, Zhongkai</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p719-2c8af6621fb03d73f9ba028ff3c5ebaef94e3dd4dec0da597a1017f0c565b323</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Bilayers</topic><topic>Electronic structure</topic><topic>Graphene</topic><topic>Insulators</topic><topic>Photoelectric emission</topic><topic>Quantum Hall effect</topic><topic>Scanning tunneling microscopy</topic><topic>Spectrum analysis</topic><topic>Superlattices</topic><topic>Two dimensional materials</topic><topic>Unconventional superconductivity</topic><toplevel>online_resources</toplevel><creatorcontrib>Li, Yiwei</creatorcontrib><creatorcontrib>Zhang, Shihao</creatorcontrib><creatorcontrib>Chen, Fanqiang</creatorcontrib><creatorcontrib>Wei, Liyang</creatorcontrib><creatorcontrib>Zhang, Zonglin</creatorcontrib><creatorcontrib>Xiao, Hanbo</creatorcontrib><creatorcontrib>Gao, Han</creatorcontrib><creatorcontrib>Chen, Moyu</creatorcontrib><creatorcontrib>Liang, Shijun</creatorcontrib><creatorcontrib>Ding Pei</creatorcontrib><creatorcontrib>Xu, Lixuan</creatorcontrib><creatorcontrib>Watanabe, Kenji</creatorcontrib><creatorcontrib>Taniguchi, Takashi</creatorcontrib><creatorcontrib>Yang, Lexian</creatorcontrib><creatorcontrib>Miao, Feng</creatorcontrib><creatorcontrib>Liu, Jianpeng</creatorcontrib><creatorcontrib>Cheng, Bin</creatorcontrib><creatorcontrib>Wang, Meixiao</creatorcontrib><creatorcontrib>Chen, Yulin</creatorcontrib><creatorcontrib>Liu, Zhongkai</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Databases</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Yiwei</au><au>Zhang, Shihao</au><au>Chen, Fanqiang</au><au>Wei, Liyang</au><au>Zhang, Zonglin</au><au>Xiao, Hanbo</au><au>Gao, Han</au><au>Chen, Moyu</au><au>Liang, Shijun</au><au>Ding Pei</au><au>Xu, Lixuan</au><au>Watanabe, Kenji</au><au>Taniguchi, Takashi</au><au>Yang, Lexian</au><au>Miao, Feng</au><au>Liu, Jianpeng</au><au>Cheng, Bin</au><au>Wang, Meixiao</au><au>Chen, Yulin</au><au>Liu, Zhongkai</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Observation of Coexisting Dirac Bands and Moiré Flat Bands in Magic-Angle Twisted Trilayer Graphene</atitle><jtitle>arXiv.org</jtitle><date>2022-09-08</date><risdate>2022</risdate><eissn>2331-8422</eissn><abstract>Moiré superlattices that consist of two or more layers of two-dimensional materials stacked together with a small twist angle have emerged as a tunable platform to realize various correlated and topological phases, such as Mott insulators, unconventional uperconductivity and quantum anomalous Hall effect. Recently, the magic-angle twisted trilayer graphene (MATTG) has shown both robust superconductivity similar to magic-angle twisted bilayer graphene (MATBG) and other unique properties, including the Pauli-limit violating and re-entrant superconductivity. These rich properties are deeply rooted in its electronic structure under the influence of distinct moiré potential and mirror symmetry. Here, combining nanometer-scale spatially resolved angle-resolved photoemission spectroscopy (nano-ARPES) and scanning tunneling microscopy/spectroscopy (STM/STS), we systematically measure the yet unexplored band structure of MATTG near charge neutrality. Our measurements reveal the coexistence of the distinct dispersive Dirac band with the emergent moiré flat band, showing nice agreement with the theoretical calculations. These results serve as a stepstone for further understanding of the unconventional superconductivity in MATTG.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><doi>10.48550/arxiv.2209.02199</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2022-09
issn 2331-8422
language eng
recordid cdi_proquest_journals_2711103584
source Publicly Available Content Database
subjects Bilayers
Electronic structure
Graphene
Insulators
Photoelectric emission
Quantum Hall effect
Scanning tunneling microscopy
Spectrum analysis
Superlattices
Two dimensional materials
Unconventional superconductivity
title Observation of Coexisting Dirac Bands and Moiré Flat Bands in Magic-Angle Twisted Trilayer Graphene
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T15%3A16%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Observation%20of%20Coexisting%20Dirac%20Bands%20and%20Moir%C3%A9%20Flat%20Bands%20in%20Magic-Angle%20Twisted%20Trilayer%20Graphene&rft.jtitle=arXiv.org&rft.au=Li,%20Yiwei&rft.date=2022-09-08&rft.eissn=2331-8422&rft_id=info:doi/10.48550/arxiv.2209.02199&rft_dat=%3Cproquest%3E2711103584%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-p719-2c8af6621fb03d73f9ba028ff3c5ebaef94e3dd4dec0da597a1017f0c565b323%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2711103584&rft_id=info:pmid/&rfr_iscdi=true