Loading…
Observation of Coexisting Dirac Bands and Moiré Flat Bands in Magic-Angle Twisted Trilayer Graphene
Moiré superlattices that consist of two or more layers of two-dimensional materials stacked together with a small twist angle have emerged as a tunable platform to realize various correlated and topological phases, such as Mott insulators, unconventional uperconductivity and quantum anomalous Hall e...
Saved in:
Published in: | arXiv.org 2022-09 |
---|---|
Main Authors: | , , , , , , , , , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | |
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Li, Yiwei Zhang, Shihao Chen, Fanqiang Wei, Liyang Zhang, Zonglin Xiao, Hanbo Gao, Han Chen, Moyu Liang, Shijun Ding Pei Xu, Lixuan Watanabe, Kenji Taniguchi, Takashi Yang, Lexian Miao, Feng Liu, Jianpeng Cheng, Bin Wang, Meixiao Chen, Yulin Liu, Zhongkai |
description | Moiré superlattices that consist of two or more layers of two-dimensional materials stacked together with a small twist angle have emerged as a tunable platform to realize various correlated and topological phases, such as Mott insulators, unconventional uperconductivity and quantum anomalous Hall effect. Recently, the magic-angle twisted trilayer graphene (MATTG) has shown both robust superconductivity similar to magic-angle twisted bilayer graphene (MATBG) and other unique properties, including the Pauli-limit violating and re-entrant superconductivity. These rich properties are deeply rooted in its electronic structure under the influence of distinct moiré potential and mirror symmetry. Here, combining nanometer-scale spatially resolved angle-resolved photoemission spectroscopy (nano-ARPES) and scanning tunneling microscopy/spectroscopy (STM/STS), we systematically measure the yet unexplored band structure of MATTG near charge neutrality. Our measurements reveal the coexistence of the distinct dispersive Dirac band with the emergent moiré flat band, showing nice agreement with the theoretical calculations. These results serve as a stepstone for further understanding of the unconventional superconductivity in MATTG. |
doi_str_mv | 10.48550/arxiv.2209.02199 |
format | article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2711103584</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2711103584</sourcerecordid><originalsourceid>FETCH-LOGICAL-p719-2c8af6621fb03d73f9ba028ff3c5ebaef94e3dd4dec0da597a1017f0c565b323</originalsourceid><addsrcrecordid>eNotjcFqAjEURUOhULF-QHeBrse-vExmJktrqxYUF3UvbyaJjQwZm4zWflK_oz9WoW7uhQP3XMYeBIzzSil4onj2pzEi6DGg0PqGDVBKkVU54h0bpbQHACxKVEoOmFnXycYT9b4LvHN82tmzT70PO_7iIzX8mYJJ_BJ81fn4-8NnLfVX6gNf0c432STsWss3X5elNXwTfUvfNvJ5pMOHDfae3Tpqkx1de8jeZ6-b6SJbrudv08kyO5RCZ9hU5IoChatBmlI6XRNg5ZxslK3JOp1baUxubAOGlC5JgCgdNKpQtUQ5ZI__1kPsPo829dt9d4zhcrjFUggBUlW5_ANf7Fgs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2711103584</pqid></control><display><type>article</type><title>Observation of Coexisting Dirac Bands and Moiré Flat Bands in Magic-Angle Twisted Trilayer Graphene</title><source>Publicly Available Content Database</source><creator>Li, Yiwei ; Zhang, Shihao ; Chen, Fanqiang ; Wei, Liyang ; Zhang, Zonglin ; Xiao, Hanbo ; Gao, Han ; Chen, Moyu ; Liang, Shijun ; Ding Pei ; Xu, Lixuan ; Watanabe, Kenji ; Taniguchi, Takashi ; Yang, Lexian ; Miao, Feng ; Liu, Jianpeng ; Cheng, Bin ; Wang, Meixiao ; Chen, Yulin ; Liu, Zhongkai</creator><creatorcontrib>Li, Yiwei ; Zhang, Shihao ; Chen, Fanqiang ; Wei, Liyang ; Zhang, Zonglin ; Xiao, Hanbo ; Gao, Han ; Chen, Moyu ; Liang, Shijun ; Ding Pei ; Xu, Lixuan ; Watanabe, Kenji ; Taniguchi, Takashi ; Yang, Lexian ; Miao, Feng ; Liu, Jianpeng ; Cheng, Bin ; Wang, Meixiao ; Chen, Yulin ; Liu, Zhongkai</creatorcontrib><description>Moiré superlattices that consist of two or more layers of two-dimensional materials stacked together with a small twist angle have emerged as a tunable platform to realize various correlated and topological phases, such as Mott insulators, unconventional uperconductivity and quantum anomalous Hall effect. Recently, the magic-angle twisted trilayer graphene (MATTG) has shown both robust superconductivity similar to magic-angle twisted bilayer graphene (MATBG) and other unique properties, including the Pauli-limit violating and re-entrant superconductivity. These rich properties are deeply rooted in its electronic structure under the influence of distinct moiré potential and mirror symmetry. Here, combining nanometer-scale spatially resolved angle-resolved photoemission spectroscopy (nano-ARPES) and scanning tunneling microscopy/spectroscopy (STM/STS), we systematically measure the yet unexplored band structure of MATTG near charge neutrality. Our measurements reveal the coexistence of the distinct dispersive Dirac band with the emergent moiré flat band, showing nice agreement with the theoretical calculations. These results serve as a stepstone for further understanding of the unconventional superconductivity in MATTG.</description><identifier>EISSN: 2331-8422</identifier><identifier>DOI: 10.48550/arxiv.2209.02199</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Bilayers ; Electronic structure ; Graphene ; Insulators ; Photoelectric emission ; Quantum Hall effect ; Scanning tunneling microscopy ; Spectrum analysis ; Superlattices ; Two dimensional materials ; Unconventional superconductivity</subject><ispartof>arXiv.org, 2022-09</ispartof><rights>2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2711103584?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>780,784,25753,27925,37012,44590</link.rule.ids></links><search><creatorcontrib>Li, Yiwei</creatorcontrib><creatorcontrib>Zhang, Shihao</creatorcontrib><creatorcontrib>Chen, Fanqiang</creatorcontrib><creatorcontrib>Wei, Liyang</creatorcontrib><creatorcontrib>Zhang, Zonglin</creatorcontrib><creatorcontrib>Xiao, Hanbo</creatorcontrib><creatorcontrib>Gao, Han</creatorcontrib><creatorcontrib>Chen, Moyu</creatorcontrib><creatorcontrib>Liang, Shijun</creatorcontrib><creatorcontrib>Ding Pei</creatorcontrib><creatorcontrib>Xu, Lixuan</creatorcontrib><creatorcontrib>Watanabe, Kenji</creatorcontrib><creatorcontrib>Taniguchi, Takashi</creatorcontrib><creatorcontrib>Yang, Lexian</creatorcontrib><creatorcontrib>Miao, Feng</creatorcontrib><creatorcontrib>Liu, Jianpeng</creatorcontrib><creatorcontrib>Cheng, Bin</creatorcontrib><creatorcontrib>Wang, Meixiao</creatorcontrib><creatorcontrib>Chen, Yulin</creatorcontrib><creatorcontrib>Liu, Zhongkai</creatorcontrib><title>Observation of Coexisting Dirac Bands and Moiré Flat Bands in Magic-Angle Twisted Trilayer Graphene</title><title>arXiv.org</title><description>Moiré superlattices that consist of two or more layers of two-dimensional materials stacked together with a small twist angle have emerged as a tunable platform to realize various correlated and topological phases, such as Mott insulators, unconventional uperconductivity and quantum anomalous Hall effect. Recently, the magic-angle twisted trilayer graphene (MATTG) has shown both robust superconductivity similar to magic-angle twisted bilayer graphene (MATBG) and other unique properties, including the Pauli-limit violating and re-entrant superconductivity. These rich properties are deeply rooted in its electronic structure under the influence of distinct moiré potential and mirror symmetry. Here, combining nanometer-scale spatially resolved angle-resolved photoemission spectroscopy (nano-ARPES) and scanning tunneling microscopy/spectroscopy (STM/STS), we systematically measure the yet unexplored band structure of MATTG near charge neutrality. Our measurements reveal the coexistence of the distinct dispersive Dirac band with the emergent moiré flat band, showing nice agreement with the theoretical calculations. These results serve as a stepstone for further understanding of the unconventional superconductivity in MATTG.</description><subject>Bilayers</subject><subject>Electronic structure</subject><subject>Graphene</subject><subject>Insulators</subject><subject>Photoelectric emission</subject><subject>Quantum Hall effect</subject><subject>Scanning tunneling microscopy</subject><subject>Spectrum analysis</subject><subject>Superlattices</subject><subject>Two dimensional materials</subject><subject>Unconventional superconductivity</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNotjcFqAjEURUOhULF-QHeBrse-vExmJktrqxYUF3UvbyaJjQwZm4zWflK_oz9WoW7uhQP3XMYeBIzzSil4onj2pzEi6DGg0PqGDVBKkVU54h0bpbQHACxKVEoOmFnXycYT9b4LvHN82tmzT70PO_7iIzX8mYJJ_BJ81fn4-8NnLfVX6gNf0c432STsWss3X5elNXwTfUvfNvJ5pMOHDfae3Tpqkx1de8jeZ6-b6SJbrudv08kyO5RCZ9hU5IoChatBmlI6XRNg5ZxslK3JOp1baUxubAOGlC5JgCgdNKpQtUQ5ZI__1kPsPo829dt9d4zhcrjFUggBUlW5_ANf7Fgs</recordid><startdate>20220908</startdate><enddate>20220908</enddate><creator>Li, Yiwei</creator><creator>Zhang, Shihao</creator><creator>Chen, Fanqiang</creator><creator>Wei, Liyang</creator><creator>Zhang, Zonglin</creator><creator>Xiao, Hanbo</creator><creator>Gao, Han</creator><creator>Chen, Moyu</creator><creator>Liang, Shijun</creator><creator>Ding Pei</creator><creator>Xu, Lixuan</creator><creator>Watanabe, Kenji</creator><creator>Taniguchi, Takashi</creator><creator>Yang, Lexian</creator><creator>Miao, Feng</creator><creator>Liu, Jianpeng</creator><creator>Cheng, Bin</creator><creator>Wang, Meixiao</creator><creator>Chen, Yulin</creator><creator>Liu, Zhongkai</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20220908</creationdate><title>Observation of Coexisting Dirac Bands and Moiré Flat Bands in Magic-Angle Twisted Trilayer Graphene</title><author>Li, Yiwei ; Zhang, Shihao ; Chen, Fanqiang ; Wei, Liyang ; Zhang, Zonglin ; Xiao, Hanbo ; Gao, Han ; Chen, Moyu ; Liang, Shijun ; Ding Pei ; Xu, Lixuan ; Watanabe, Kenji ; Taniguchi, Takashi ; Yang, Lexian ; Miao, Feng ; Liu, Jianpeng ; Cheng, Bin ; Wang, Meixiao ; Chen, Yulin ; Liu, Zhongkai</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p719-2c8af6621fb03d73f9ba028ff3c5ebaef94e3dd4dec0da597a1017f0c565b323</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Bilayers</topic><topic>Electronic structure</topic><topic>Graphene</topic><topic>Insulators</topic><topic>Photoelectric emission</topic><topic>Quantum Hall effect</topic><topic>Scanning tunneling microscopy</topic><topic>Spectrum analysis</topic><topic>Superlattices</topic><topic>Two dimensional materials</topic><topic>Unconventional superconductivity</topic><toplevel>online_resources</toplevel><creatorcontrib>Li, Yiwei</creatorcontrib><creatorcontrib>Zhang, Shihao</creatorcontrib><creatorcontrib>Chen, Fanqiang</creatorcontrib><creatorcontrib>Wei, Liyang</creatorcontrib><creatorcontrib>Zhang, Zonglin</creatorcontrib><creatorcontrib>Xiao, Hanbo</creatorcontrib><creatorcontrib>Gao, Han</creatorcontrib><creatorcontrib>Chen, Moyu</creatorcontrib><creatorcontrib>Liang, Shijun</creatorcontrib><creatorcontrib>Ding Pei</creatorcontrib><creatorcontrib>Xu, Lixuan</creatorcontrib><creatorcontrib>Watanabe, Kenji</creatorcontrib><creatorcontrib>Taniguchi, Takashi</creatorcontrib><creatorcontrib>Yang, Lexian</creatorcontrib><creatorcontrib>Miao, Feng</creatorcontrib><creatorcontrib>Liu, Jianpeng</creatorcontrib><creatorcontrib>Cheng, Bin</creatorcontrib><creatorcontrib>Wang, Meixiao</creatorcontrib><creatorcontrib>Chen, Yulin</creatorcontrib><creatorcontrib>Liu, Zhongkai</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Databases</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Yiwei</au><au>Zhang, Shihao</au><au>Chen, Fanqiang</au><au>Wei, Liyang</au><au>Zhang, Zonglin</au><au>Xiao, Hanbo</au><au>Gao, Han</au><au>Chen, Moyu</au><au>Liang, Shijun</au><au>Ding Pei</au><au>Xu, Lixuan</au><au>Watanabe, Kenji</au><au>Taniguchi, Takashi</au><au>Yang, Lexian</au><au>Miao, Feng</au><au>Liu, Jianpeng</au><au>Cheng, Bin</au><au>Wang, Meixiao</au><au>Chen, Yulin</au><au>Liu, Zhongkai</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Observation of Coexisting Dirac Bands and Moiré Flat Bands in Magic-Angle Twisted Trilayer Graphene</atitle><jtitle>arXiv.org</jtitle><date>2022-09-08</date><risdate>2022</risdate><eissn>2331-8422</eissn><abstract>Moiré superlattices that consist of two or more layers of two-dimensional materials stacked together with a small twist angle have emerged as a tunable platform to realize various correlated and topological phases, such as Mott insulators, unconventional uperconductivity and quantum anomalous Hall effect. Recently, the magic-angle twisted trilayer graphene (MATTG) has shown both robust superconductivity similar to magic-angle twisted bilayer graphene (MATBG) and other unique properties, including the Pauli-limit violating and re-entrant superconductivity. These rich properties are deeply rooted in its electronic structure under the influence of distinct moiré potential and mirror symmetry. Here, combining nanometer-scale spatially resolved angle-resolved photoemission spectroscopy (nano-ARPES) and scanning tunneling microscopy/spectroscopy (STM/STS), we systematically measure the yet unexplored band structure of MATTG near charge neutrality. Our measurements reveal the coexistence of the distinct dispersive Dirac band with the emergent moiré flat band, showing nice agreement with the theoretical calculations. These results serve as a stepstone for further understanding of the unconventional superconductivity in MATTG.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><doi>10.48550/arxiv.2209.02199</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2022-09 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2711103584 |
source | Publicly Available Content Database |
subjects | Bilayers Electronic structure Graphene Insulators Photoelectric emission Quantum Hall effect Scanning tunneling microscopy Spectrum analysis Superlattices Two dimensional materials Unconventional superconductivity |
title | Observation of Coexisting Dirac Bands and Moiré Flat Bands in Magic-Angle Twisted Trilayer Graphene |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T15%3A16%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Observation%20of%20Coexisting%20Dirac%20Bands%20and%20Moir%C3%A9%20Flat%20Bands%20in%20Magic-Angle%20Twisted%20Trilayer%20Graphene&rft.jtitle=arXiv.org&rft.au=Li,%20Yiwei&rft.date=2022-09-08&rft.eissn=2331-8422&rft_id=info:doi/10.48550/arxiv.2209.02199&rft_dat=%3Cproquest%3E2711103584%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-p719-2c8af6621fb03d73f9ba028ff3c5ebaef94e3dd4dec0da597a1017f0c565b323%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2711103584&rft_id=info:pmid/&rfr_iscdi=true |