Loading…

Supervised Contrastive Learning to Classify Paranasal Anomalies in the Maxillary Sinus

Using deep learning techniques, anomalies in the paranasal sinus system can be detected automatically in MRI images and can be further analyzed and classified based on their volume, shape and other parameters like local contrast. However due to limited training data, traditional supervised learning...

Full description

Saved in:
Bibliographic Details
Published in:arXiv.org 2022-09
Main Authors: Bhattacharya, Debayan, Benjamin Tobias Becker, Behrendt, Finn, Bengs, Marcel, Beyersdorff, Dirk, Eggert, Dennis, Petersen, Elina, Jansen, Florian, Petersen, Marvin, Cheng, Bastian, Betz, Christian, Schlaefer, Alexander, Hoffmann, Anna Sophie
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Bhattacharya, Debayan
Benjamin Tobias Becker
Behrendt, Finn
Bengs, Marcel
Beyersdorff, Dirk
Eggert, Dennis
Petersen, Elina
Jansen, Florian
Petersen, Marvin
Cheng, Bastian
Betz, Christian
Schlaefer, Alexander
Hoffmann, Anna Sophie
description Using deep learning techniques, anomalies in the paranasal sinus system can be detected automatically in MRI images and can be further analyzed and classified based on their volume, shape and other parameters like local contrast. However due to limited training data, traditional supervised learning methods often fail to generalize. Existing deep learning methods in paranasal anomaly classification have been used to diagnose at most one anomaly. In our work, we consider three anomalies. Specifically, we employ a 3D CNN to separate maxillary sinus volumes without anomalies from maxillary sinus volumes with anomalies. To learn robust representations from a small labelled dataset, we propose a novel learning paradigm that combines contrastive loss and cross-entropy loss. Particularly, we use a supervised contrastive loss that encourages embeddings of maxillary sinus volumes with and without anomaly to form two distinct clusters while the cross-entropy loss encourages the 3D CNN to maintain its discriminative ability. We report that optimising with both losses is advantageous over optimising with only one loss. We also find that our training strategy leads to label efficiency. With our method, a 3D CNN classifier achieves an AUROC of 0.85 while a 3D CNN classifier optimised with cross-entropy loss achieves an AUROC of 0.66.
format article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2711107633</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2711107633</sourcerecordid><originalsourceid>FETCH-proquest_journals_27111076333</originalsourceid><addsrcrecordid>eNqNyrEKwjAUQNEgCBbtPzxwLqSJbV2lKA4KguJaHphqSkxqXlLs3-vgBzjd4dwJS4SUebZeCTFjKVHHORdlJYpCJux6jr3ygyZ1g9rZ4JGCHhQcFHqr7R2Cg9ogkW5HOKFHi4QGNtY90WhFoC2Eh4IjvrUx6Ec4axtpwaYtGlLpr3O23G0v9T7rvXtFRaHpXPT2S42o8jznVSml_O_6AEQgQW8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2711107633</pqid></control><display><type>article</type><title>Supervised Contrastive Learning to Classify Paranasal Anomalies in the Maxillary Sinus</title><source>Publicly Available Content Database</source><creator>Bhattacharya, Debayan ; Benjamin Tobias Becker ; Behrendt, Finn ; Bengs, Marcel ; Beyersdorff, Dirk ; Eggert, Dennis ; Petersen, Elina ; Jansen, Florian ; Petersen, Marvin ; Cheng, Bastian ; Betz, Christian ; Schlaefer, Alexander ; Hoffmann, Anna Sophie</creator><creatorcontrib>Bhattacharya, Debayan ; Benjamin Tobias Becker ; Behrendt, Finn ; Bengs, Marcel ; Beyersdorff, Dirk ; Eggert, Dennis ; Petersen, Elina ; Jansen, Florian ; Petersen, Marvin ; Cheng, Bastian ; Betz, Christian ; Schlaefer, Alexander ; Hoffmann, Anna Sophie</creatorcontrib><description>Using deep learning techniques, anomalies in the paranasal sinus system can be detected automatically in MRI images and can be further analyzed and classified based on their volume, shape and other parameters like local contrast. However due to limited training data, traditional supervised learning methods often fail to generalize. Existing deep learning methods in paranasal anomaly classification have been used to diagnose at most one anomaly. In our work, we consider three anomalies. Specifically, we employ a 3D CNN to separate maxillary sinus volumes without anomalies from maxillary sinus volumes with anomalies. To learn robust representations from a small labelled dataset, we propose a novel learning paradigm that combines contrastive loss and cross-entropy loss. Particularly, we use a supervised contrastive loss that encourages embeddings of maxillary sinus volumes with and without anomaly to form two distinct clusters while the cross-entropy loss encourages the 3D CNN to maintain its discriminative ability. We report that optimising with both losses is advantageous over optimising with only one loss. We also find that our training strategy leads to label efficiency. With our method, a 3D CNN classifier achieves an AUROC of 0.85 while a 3D CNN classifier optimised with cross-entropy loss achieves an AUROC of 0.66.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Anomalies ; Classifiers ; Deep learning ; Entropy ; Machine learning ; Sinuses ; Teaching methods ; Training</subject><ispartof>arXiv.org, 2022-09</ispartof><rights>2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2711107633?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>780,784,25753,37012,44590</link.rule.ids></links><search><creatorcontrib>Bhattacharya, Debayan</creatorcontrib><creatorcontrib>Benjamin Tobias Becker</creatorcontrib><creatorcontrib>Behrendt, Finn</creatorcontrib><creatorcontrib>Bengs, Marcel</creatorcontrib><creatorcontrib>Beyersdorff, Dirk</creatorcontrib><creatorcontrib>Eggert, Dennis</creatorcontrib><creatorcontrib>Petersen, Elina</creatorcontrib><creatorcontrib>Jansen, Florian</creatorcontrib><creatorcontrib>Petersen, Marvin</creatorcontrib><creatorcontrib>Cheng, Bastian</creatorcontrib><creatorcontrib>Betz, Christian</creatorcontrib><creatorcontrib>Schlaefer, Alexander</creatorcontrib><creatorcontrib>Hoffmann, Anna Sophie</creatorcontrib><title>Supervised Contrastive Learning to Classify Paranasal Anomalies in the Maxillary Sinus</title><title>arXiv.org</title><description>Using deep learning techniques, anomalies in the paranasal sinus system can be detected automatically in MRI images and can be further analyzed and classified based on their volume, shape and other parameters like local contrast. However due to limited training data, traditional supervised learning methods often fail to generalize. Existing deep learning methods in paranasal anomaly classification have been used to diagnose at most one anomaly. In our work, we consider three anomalies. Specifically, we employ a 3D CNN to separate maxillary sinus volumes without anomalies from maxillary sinus volumes with anomalies. To learn robust representations from a small labelled dataset, we propose a novel learning paradigm that combines contrastive loss and cross-entropy loss. Particularly, we use a supervised contrastive loss that encourages embeddings of maxillary sinus volumes with and without anomaly to form two distinct clusters while the cross-entropy loss encourages the 3D CNN to maintain its discriminative ability. We report that optimising with both losses is advantageous over optimising with only one loss. We also find that our training strategy leads to label efficiency. With our method, a 3D CNN classifier achieves an AUROC of 0.85 while a 3D CNN classifier optimised with cross-entropy loss achieves an AUROC of 0.66.</description><subject>Anomalies</subject><subject>Classifiers</subject><subject>Deep learning</subject><subject>Entropy</subject><subject>Machine learning</subject><subject>Sinuses</subject><subject>Teaching methods</subject><subject>Training</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNqNyrEKwjAUQNEgCBbtPzxwLqSJbV2lKA4KguJaHphqSkxqXlLs3-vgBzjd4dwJS4SUebZeCTFjKVHHORdlJYpCJux6jr3ygyZ1g9rZ4JGCHhQcFHqr7R2Cg9ogkW5HOKFHi4QGNtY90WhFoC2Eh4IjvrUx6Ec4axtpwaYtGlLpr3O23G0v9T7rvXtFRaHpXPT2S42o8jznVSml_O_6AEQgQW8</recordid><startdate>20220905</startdate><enddate>20220905</enddate><creator>Bhattacharya, Debayan</creator><creator>Benjamin Tobias Becker</creator><creator>Behrendt, Finn</creator><creator>Bengs, Marcel</creator><creator>Beyersdorff, Dirk</creator><creator>Eggert, Dennis</creator><creator>Petersen, Elina</creator><creator>Jansen, Florian</creator><creator>Petersen, Marvin</creator><creator>Cheng, Bastian</creator><creator>Betz, Christian</creator><creator>Schlaefer, Alexander</creator><creator>Hoffmann, Anna Sophie</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20220905</creationdate><title>Supervised Contrastive Learning to Classify Paranasal Anomalies in the Maxillary Sinus</title><author>Bhattacharya, Debayan ; Benjamin Tobias Becker ; Behrendt, Finn ; Bengs, Marcel ; Beyersdorff, Dirk ; Eggert, Dennis ; Petersen, Elina ; Jansen, Florian ; Petersen, Marvin ; Cheng, Bastian ; Betz, Christian ; Schlaefer, Alexander ; Hoffmann, Anna Sophie</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_27111076333</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Anomalies</topic><topic>Classifiers</topic><topic>Deep learning</topic><topic>Entropy</topic><topic>Machine learning</topic><topic>Sinuses</topic><topic>Teaching methods</topic><topic>Training</topic><toplevel>online_resources</toplevel><creatorcontrib>Bhattacharya, Debayan</creatorcontrib><creatorcontrib>Benjamin Tobias Becker</creatorcontrib><creatorcontrib>Behrendt, Finn</creatorcontrib><creatorcontrib>Bengs, Marcel</creatorcontrib><creatorcontrib>Beyersdorff, Dirk</creatorcontrib><creatorcontrib>Eggert, Dennis</creatorcontrib><creatorcontrib>Petersen, Elina</creatorcontrib><creatorcontrib>Jansen, Florian</creatorcontrib><creatorcontrib>Petersen, Marvin</creatorcontrib><creatorcontrib>Cheng, Bastian</creatorcontrib><creatorcontrib>Betz, Christian</creatorcontrib><creatorcontrib>Schlaefer, Alexander</creatorcontrib><creatorcontrib>Hoffmann, Anna Sophie</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bhattacharya, Debayan</au><au>Benjamin Tobias Becker</au><au>Behrendt, Finn</au><au>Bengs, Marcel</au><au>Beyersdorff, Dirk</au><au>Eggert, Dennis</au><au>Petersen, Elina</au><au>Jansen, Florian</au><au>Petersen, Marvin</au><au>Cheng, Bastian</au><au>Betz, Christian</au><au>Schlaefer, Alexander</au><au>Hoffmann, Anna Sophie</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Supervised Contrastive Learning to Classify Paranasal Anomalies in the Maxillary Sinus</atitle><jtitle>arXiv.org</jtitle><date>2022-09-05</date><risdate>2022</risdate><eissn>2331-8422</eissn><abstract>Using deep learning techniques, anomalies in the paranasal sinus system can be detected automatically in MRI images and can be further analyzed and classified based on their volume, shape and other parameters like local contrast. However due to limited training data, traditional supervised learning methods often fail to generalize. Existing deep learning methods in paranasal anomaly classification have been used to diagnose at most one anomaly. In our work, we consider three anomalies. Specifically, we employ a 3D CNN to separate maxillary sinus volumes without anomalies from maxillary sinus volumes with anomalies. To learn robust representations from a small labelled dataset, we propose a novel learning paradigm that combines contrastive loss and cross-entropy loss. Particularly, we use a supervised contrastive loss that encourages embeddings of maxillary sinus volumes with and without anomaly to form two distinct clusters while the cross-entropy loss encourages the 3D CNN to maintain its discriminative ability. We report that optimising with both losses is advantageous over optimising with only one loss. We also find that our training strategy leads to label efficiency. With our method, a 3D CNN classifier achieves an AUROC of 0.85 while a 3D CNN classifier optimised with cross-entropy loss achieves an AUROC of 0.66.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2022-09
issn 2331-8422
language eng
recordid cdi_proquest_journals_2711107633
source Publicly Available Content Database
subjects Anomalies
Classifiers
Deep learning
Entropy
Machine learning
Sinuses
Teaching methods
Training
title Supervised Contrastive Learning to Classify Paranasal Anomalies in the Maxillary Sinus
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T09%3A14%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Supervised%20Contrastive%20Learning%20to%20Classify%20Paranasal%20Anomalies%20in%20the%20Maxillary%20Sinus&rft.jtitle=arXiv.org&rft.au=Bhattacharya,%20Debayan&rft.date=2022-09-05&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2711107633%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-proquest_journals_27111076333%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2711107633&rft_id=info:pmid/&rfr_iscdi=true