Loading…

Testing and validating the improved estimation of the spectrometer‐transmission function with UNIFIT 2022

Recent developments of X‐ray photoelectron spectroscopy using excitation energies different from the usual lab‐sources Mg Kα and Al Kα, thus covering larger and different kinetic energy ranges, require more flexible approaches for determining the transmission function than the well‐established ones...

Full description

Saved in:
Bibliographic Details
Published in:Surface and interface analysis 2022-10, Vol.54 (10), p.1098-1104
Main Authors: Hesse, Ronald, Denecke, Reinhard, Radnik, Jörg
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c2881-9961a980d6259774797e98ef1d780c44f7c66e32c5fbbd06a61b66d18e93f9fd3
container_end_page 1104
container_issue 10
container_start_page 1098
container_title Surface and interface analysis
container_volume 54
creator Hesse, Ronald
Denecke, Reinhard
Radnik, Jörg
description Recent developments of X‐ray photoelectron spectroscopy using excitation energies different from the usual lab‐sources Mg Kα and Al Kα, thus covering larger and different kinetic energy ranges, require more flexible approaches for determining the transmission function than the well‐established ones using reference spectra. Therefore, the approach using quantified peak areas (QPA) was refined allowing a more precise estimation of the transmission function. This refinement was tested by comparing the results obtained with the new version with former calculations. Furthermore, the obtained transmission function was validated by comparing the results with a transmission function using the reference spectrum of polyethylene. Additionally, an ionic liquid was used as reference for estimating the transmission function at the energy‐resolved HE‐SGM beamline at BESSY II. Comparison between the measured and stoichiometric composition shows that a transmission function was determined, which allows a reasonable quantification.
doi_str_mv 10.1002/sia.7131
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2711189571</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2711189571</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2881-9961a980d6259774797e98ef1d780c44f7c66e32c5fbbd06a61b66d18e93f9fd3</originalsourceid><addsrcrecordid>eNp1kE1OwzAQRi0EEiUgcYRIbNikeJzUP8uqohCpggXt2nJjm6Y0SbHTVt1xBM7ISXBStqxGM_M0_vwQugU8BIzJgy_VkEEKZ2gAWNBECODnaIAhIwnJCFyiK-_XGGOecjpAH3Pj27J-j1Wt473alFr1bbsycVltXbM3Ou6QKsybOm5sv_JbU7SuqUxr3M_Xd-tU7avS-w6xu7ro2UPZruLFSz7N5zHBhFyjC6s23tz81Qgtpo_zyXMye33KJ-NZUhDOISSmoATHmpKRYCxjghnBjQXNOC6yzLKCUpOSYmSXS42porCkVAM3IrXC6jRCd6e7If7nLoSX62bn6vCkJAwAuBgFQxG6P1GFa7x3xsqtC790RwlYdiplUCk7lQFNTuih3Jjjv5x8y8c9_wtzz3X_</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2711189571</pqid></control><display><type>article</type><title>Testing and validating the improved estimation of the spectrometer‐transmission function with UNIFIT 2022</title><source>Wiley-Blackwell Read &amp; Publish Collection</source><creator>Hesse, Ronald ; Denecke, Reinhard ; Radnik, Jörg</creator><creatorcontrib>Hesse, Ronald ; Denecke, Reinhard ; Radnik, Jörg</creatorcontrib><description>Recent developments of X‐ray photoelectron spectroscopy using excitation energies different from the usual lab‐sources Mg Kα and Al Kα, thus covering larger and different kinetic energy ranges, require more flexible approaches for determining the transmission function than the well‐established ones using reference spectra. Therefore, the approach using quantified peak areas (QPA) was refined allowing a more precise estimation of the transmission function. This refinement was tested by comparing the results obtained with the new version with former calculations. Furthermore, the obtained transmission function was validated by comparing the results with a transmission function using the reference spectrum of polyethylene. Additionally, an ionic liquid was used as reference for estimating the transmission function at the energy‐resolved HE‐SGM beamline at BESSY II. Comparison between the measured and stoichiometric composition shows that a transmission function was determined, which allows a reasonable quantification.</description><identifier>ISSN: 0142-2421</identifier><identifier>EISSN: 1096-9918</identifier><identifier>DOI: 10.1002/sia.7131</identifier><language>eng</language><publisher>Bognor Regis: Wiley Subscription Services, Inc</publisher><subject>Aluminum ; Estimation ; Excitation spectra ; Ionic liquids ; Kinetic energy ; Magnesium ; photoelectron spectroscopy ; Photoelectrons ; Polyethylenes ; quantification ; software UNIFIT 2022 ; synchrotron radiation ; transmission function IERF</subject><ispartof>Surface and interface analysis, 2022-10, Vol.54 (10), p.1098-1104</ispartof><rights>2022 The Authors. published by John Wiley &amp; Sons Ltd.</rights><rights>2022. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c2881-9961a980d6259774797e98ef1d780c44f7c66e32c5fbbd06a61b66d18e93f9fd3</cites><orcidid>0000-0003-1065-5791 ; 0000-0003-0302-6815 ; 0000-0001-8631-6687</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Hesse, Ronald</creatorcontrib><creatorcontrib>Denecke, Reinhard</creatorcontrib><creatorcontrib>Radnik, Jörg</creatorcontrib><title>Testing and validating the improved estimation of the spectrometer‐transmission function with UNIFIT 2022</title><title>Surface and interface analysis</title><description>Recent developments of X‐ray photoelectron spectroscopy using excitation energies different from the usual lab‐sources Mg Kα and Al Kα, thus covering larger and different kinetic energy ranges, require more flexible approaches for determining the transmission function than the well‐established ones using reference spectra. Therefore, the approach using quantified peak areas (QPA) was refined allowing a more precise estimation of the transmission function. This refinement was tested by comparing the results obtained with the new version with former calculations. Furthermore, the obtained transmission function was validated by comparing the results with a transmission function using the reference spectrum of polyethylene. Additionally, an ionic liquid was used as reference for estimating the transmission function at the energy‐resolved HE‐SGM beamline at BESSY II. Comparison between the measured and stoichiometric composition shows that a transmission function was determined, which allows a reasonable quantification.</description><subject>Aluminum</subject><subject>Estimation</subject><subject>Excitation spectra</subject><subject>Ionic liquids</subject><subject>Kinetic energy</subject><subject>Magnesium</subject><subject>photoelectron spectroscopy</subject><subject>Photoelectrons</subject><subject>Polyethylenes</subject><subject>quantification</subject><subject>software UNIFIT 2022</subject><subject>synchrotron radiation</subject><subject>transmission function IERF</subject><issn>0142-2421</issn><issn>1096-9918</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><recordid>eNp1kE1OwzAQRi0EEiUgcYRIbNikeJzUP8uqohCpggXt2nJjm6Y0SbHTVt1xBM7ISXBStqxGM_M0_vwQugU8BIzJgy_VkEEKZ2gAWNBECODnaIAhIwnJCFyiK-_XGGOecjpAH3Pj27J-j1Wt473alFr1bbsycVltXbM3Ou6QKsybOm5sv_JbU7SuqUxr3M_Xd-tU7avS-w6xu7ro2UPZruLFSz7N5zHBhFyjC6s23tz81Qgtpo_zyXMye33KJ-NZUhDOISSmoATHmpKRYCxjghnBjQXNOC6yzLKCUpOSYmSXS42porCkVAM3IrXC6jRCd6e7If7nLoSX62bn6vCkJAwAuBgFQxG6P1GFa7x3xsqtC790RwlYdiplUCk7lQFNTuih3Jjjv5x8y8c9_wtzz3X_</recordid><startdate>202210</startdate><enddate>202210</enddate><creator>Hesse, Ronald</creator><creator>Denecke, Reinhard</creator><creator>Radnik, Jörg</creator><general>Wiley Subscription Services, Inc</general><scope>24P</scope><scope>WIN</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-1065-5791</orcidid><orcidid>https://orcid.org/0000-0003-0302-6815</orcidid><orcidid>https://orcid.org/0000-0001-8631-6687</orcidid></search><sort><creationdate>202210</creationdate><title>Testing and validating the improved estimation of the spectrometer‐transmission function with UNIFIT 2022</title><author>Hesse, Ronald ; Denecke, Reinhard ; Radnik, Jörg</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2881-9961a980d6259774797e98ef1d780c44f7c66e32c5fbbd06a61b66d18e93f9fd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Aluminum</topic><topic>Estimation</topic><topic>Excitation spectra</topic><topic>Ionic liquids</topic><topic>Kinetic energy</topic><topic>Magnesium</topic><topic>photoelectron spectroscopy</topic><topic>Photoelectrons</topic><topic>Polyethylenes</topic><topic>quantification</topic><topic>software UNIFIT 2022</topic><topic>synchrotron radiation</topic><topic>transmission function IERF</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hesse, Ronald</creatorcontrib><creatorcontrib>Denecke, Reinhard</creatorcontrib><creatorcontrib>Radnik, Jörg</creatorcontrib><collection>Wiley-Blackwell Open Access Collection</collection><collection>Wiley Online Library Free Content</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Surface and interface analysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hesse, Ronald</au><au>Denecke, Reinhard</au><au>Radnik, Jörg</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Testing and validating the improved estimation of the spectrometer‐transmission function with UNIFIT 2022</atitle><jtitle>Surface and interface analysis</jtitle><date>2022-10</date><risdate>2022</risdate><volume>54</volume><issue>10</issue><spage>1098</spage><epage>1104</epage><pages>1098-1104</pages><issn>0142-2421</issn><eissn>1096-9918</eissn><abstract>Recent developments of X‐ray photoelectron spectroscopy using excitation energies different from the usual lab‐sources Mg Kα and Al Kα, thus covering larger and different kinetic energy ranges, require more flexible approaches for determining the transmission function than the well‐established ones using reference spectra. Therefore, the approach using quantified peak areas (QPA) was refined allowing a more precise estimation of the transmission function. This refinement was tested by comparing the results obtained with the new version with former calculations. Furthermore, the obtained transmission function was validated by comparing the results with a transmission function using the reference spectrum of polyethylene. Additionally, an ionic liquid was used as reference for estimating the transmission function at the energy‐resolved HE‐SGM beamline at BESSY II. Comparison between the measured and stoichiometric composition shows that a transmission function was determined, which allows a reasonable quantification.</abstract><cop>Bognor Regis</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/sia.7131</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0003-1065-5791</orcidid><orcidid>https://orcid.org/0000-0003-0302-6815</orcidid><orcidid>https://orcid.org/0000-0001-8631-6687</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0142-2421
ispartof Surface and interface analysis, 2022-10, Vol.54 (10), p.1098-1104
issn 0142-2421
1096-9918
language eng
recordid cdi_proquest_journals_2711189571
source Wiley-Blackwell Read & Publish Collection
subjects Aluminum
Estimation
Excitation spectra
Ionic liquids
Kinetic energy
Magnesium
photoelectron spectroscopy
Photoelectrons
Polyethylenes
quantification
software UNIFIT 2022
synchrotron radiation
transmission function IERF
title Testing and validating the improved estimation of the spectrometer‐transmission function with UNIFIT 2022
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T21%3A30%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Testing%20and%20validating%20the%20improved%20estimation%20of%20the%20spectrometer%E2%80%90transmission%20function%20with%20UNIFIT%202022&rft.jtitle=Surface%20and%20interface%20analysis&rft.au=Hesse,%20Ronald&rft.date=2022-10&rft.volume=54&rft.issue=10&rft.spage=1098&rft.epage=1104&rft.pages=1098-1104&rft.issn=0142-2421&rft.eissn=1096-9918&rft_id=info:doi/10.1002/sia.7131&rft_dat=%3Cproquest_cross%3E2711189571%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c2881-9961a980d6259774797e98ef1d780c44f7c66e32c5fbbd06a61b66d18e93f9fd3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2711189571&rft_id=info:pmid/&rfr_iscdi=true