Loading…
Testing and validating the improved estimation of the spectrometer‐transmission function with UNIFIT 2022
Recent developments of X‐ray photoelectron spectroscopy using excitation energies different from the usual lab‐sources Mg Kα and Al Kα, thus covering larger and different kinetic energy ranges, require more flexible approaches for determining the transmission function than the well‐established ones...
Saved in:
Published in: | Surface and interface analysis 2022-10, Vol.54 (10), p.1098-1104 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c2881-9961a980d6259774797e98ef1d780c44f7c66e32c5fbbd06a61b66d18e93f9fd3 |
container_end_page | 1104 |
container_issue | 10 |
container_start_page | 1098 |
container_title | Surface and interface analysis |
container_volume | 54 |
creator | Hesse, Ronald Denecke, Reinhard Radnik, Jörg |
description | Recent developments of X‐ray photoelectron spectroscopy using excitation energies different from the usual lab‐sources Mg Kα and Al Kα, thus covering larger and different kinetic energy ranges, require more flexible approaches for determining the transmission function than the well‐established ones using reference spectra. Therefore, the approach using quantified peak areas (QPA) was refined allowing a more precise estimation of the transmission function. This refinement was tested by comparing the results obtained with the new version with former calculations. Furthermore, the obtained transmission function was validated by comparing the results with a transmission function using the reference spectrum of polyethylene. Additionally, an ionic liquid was used as reference for estimating the transmission function at the energy‐resolved HE‐SGM beamline at BESSY II. Comparison between the measured and stoichiometric composition shows that a transmission function was determined, which allows a reasonable quantification. |
doi_str_mv | 10.1002/sia.7131 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2711189571</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2711189571</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2881-9961a980d6259774797e98ef1d780c44f7c66e32c5fbbd06a61b66d18e93f9fd3</originalsourceid><addsrcrecordid>eNp1kE1OwzAQRi0EEiUgcYRIbNikeJzUP8uqohCpggXt2nJjm6Y0SbHTVt1xBM7ISXBStqxGM_M0_vwQugU8BIzJgy_VkEEKZ2gAWNBECODnaIAhIwnJCFyiK-_XGGOecjpAH3Pj27J-j1Wt473alFr1bbsycVltXbM3Ou6QKsybOm5sv_JbU7SuqUxr3M_Xd-tU7avS-w6xu7ro2UPZruLFSz7N5zHBhFyjC6s23tz81Qgtpo_zyXMye33KJ-NZUhDOISSmoATHmpKRYCxjghnBjQXNOC6yzLKCUpOSYmSXS42porCkVAM3IrXC6jRCd6e7If7nLoSX62bn6vCkJAwAuBgFQxG6P1GFa7x3xsqtC790RwlYdiplUCk7lQFNTuih3Jjjv5x8y8c9_wtzz3X_</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2711189571</pqid></control><display><type>article</type><title>Testing and validating the improved estimation of the spectrometer‐transmission function with UNIFIT 2022</title><source>Wiley-Blackwell Read & Publish Collection</source><creator>Hesse, Ronald ; Denecke, Reinhard ; Radnik, Jörg</creator><creatorcontrib>Hesse, Ronald ; Denecke, Reinhard ; Radnik, Jörg</creatorcontrib><description>Recent developments of X‐ray photoelectron spectroscopy using excitation energies different from the usual lab‐sources Mg Kα and Al Kα, thus covering larger and different kinetic energy ranges, require more flexible approaches for determining the transmission function than the well‐established ones using reference spectra. Therefore, the approach using quantified peak areas (QPA) was refined allowing a more precise estimation of the transmission function. This refinement was tested by comparing the results obtained with the new version with former calculations. Furthermore, the obtained transmission function was validated by comparing the results with a transmission function using the reference spectrum of polyethylene. Additionally, an ionic liquid was used as reference for estimating the transmission function at the energy‐resolved HE‐SGM beamline at BESSY II. Comparison between the measured and stoichiometric composition shows that a transmission function was determined, which allows a reasonable quantification.</description><identifier>ISSN: 0142-2421</identifier><identifier>EISSN: 1096-9918</identifier><identifier>DOI: 10.1002/sia.7131</identifier><language>eng</language><publisher>Bognor Regis: Wiley Subscription Services, Inc</publisher><subject>Aluminum ; Estimation ; Excitation spectra ; Ionic liquids ; Kinetic energy ; Magnesium ; photoelectron spectroscopy ; Photoelectrons ; Polyethylenes ; quantification ; software UNIFIT 2022 ; synchrotron radiation ; transmission function IERF</subject><ispartof>Surface and interface analysis, 2022-10, Vol.54 (10), p.1098-1104</ispartof><rights>2022 The Authors. published by John Wiley & Sons Ltd.</rights><rights>2022. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c2881-9961a980d6259774797e98ef1d780c44f7c66e32c5fbbd06a61b66d18e93f9fd3</cites><orcidid>0000-0003-1065-5791 ; 0000-0003-0302-6815 ; 0000-0001-8631-6687</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Hesse, Ronald</creatorcontrib><creatorcontrib>Denecke, Reinhard</creatorcontrib><creatorcontrib>Radnik, Jörg</creatorcontrib><title>Testing and validating the improved estimation of the spectrometer‐transmission function with UNIFIT 2022</title><title>Surface and interface analysis</title><description>Recent developments of X‐ray photoelectron spectroscopy using excitation energies different from the usual lab‐sources Mg Kα and Al Kα, thus covering larger and different kinetic energy ranges, require more flexible approaches for determining the transmission function than the well‐established ones using reference spectra. Therefore, the approach using quantified peak areas (QPA) was refined allowing a more precise estimation of the transmission function. This refinement was tested by comparing the results obtained with the new version with former calculations. Furthermore, the obtained transmission function was validated by comparing the results with a transmission function using the reference spectrum of polyethylene. Additionally, an ionic liquid was used as reference for estimating the transmission function at the energy‐resolved HE‐SGM beamline at BESSY II. Comparison between the measured and stoichiometric composition shows that a transmission function was determined, which allows a reasonable quantification.</description><subject>Aluminum</subject><subject>Estimation</subject><subject>Excitation spectra</subject><subject>Ionic liquids</subject><subject>Kinetic energy</subject><subject>Magnesium</subject><subject>photoelectron spectroscopy</subject><subject>Photoelectrons</subject><subject>Polyethylenes</subject><subject>quantification</subject><subject>software UNIFIT 2022</subject><subject>synchrotron radiation</subject><subject>transmission function IERF</subject><issn>0142-2421</issn><issn>1096-9918</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><recordid>eNp1kE1OwzAQRi0EEiUgcYRIbNikeJzUP8uqohCpggXt2nJjm6Y0SbHTVt1xBM7ISXBStqxGM_M0_vwQugU8BIzJgy_VkEEKZ2gAWNBECODnaIAhIwnJCFyiK-_XGGOecjpAH3Pj27J-j1Wt473alFr1bbsycVltXbM3Ou6QKsybOm5sv_JbU7SuqUxr3M_Xd-tU7avS-w6xu7ro2UPZruLFSz7N5zHBhFyjC6s23tz81Qgtpo_zyXMye33KJ-NZUhDOISSmoATHmpKRYCxjghnBjQXNOC6yzLKCUpOSYmSXS42porCkVAM3IrXC6jRCd6e7If7nLoSX62bn6vCkJAwAuBgFQxG6P1GFa7x3xsqtC790RwlYdiplUCk7lQFNTuih3Jjjv5x8y8c9_wtzz3X_</recordid><startdate>202210</startdate><enddate>202210</enddate><creator>Hesse, Ronald</creator><creator>Denecke, Reinhard</creator><creator>Radnik, Jörg</creator><general>Wiley Subscription Services, Inc</general><scope>24P</scope><scope>WIN</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-1065-5791</orcidid><orcidid>https://orcid.org/0000-0003-0302-6815</orcidid><orcidid>https://orcid.org/0000-0001-8631-6687</orcidid></search><sort><creationdate>202210</creationdate><title>Testing and validating the improved estimation of the spectrometer‐transmission function with UNIFIT 2022</title><author>Hesse, Ronald ; Denecke, Reinhard ; Radnik, Jörg</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2881-9961a980d6259774797e98ef1d780c44f7c66e32c5fbbd06a61b66d18e93f9fd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Aluminum</topic><topic>Estimation</topic><topic>Excitation spectra</topic><topic>Ionic liquids</topic><topic>Kinetic energy</topic><topic>Magnesium</topic><topic>photoelectron spectroscopy</topic><topic>Photoelectrons</topic><topic>Polyethylenes</topic><topic>quantification</topic><topic>software UNIFIT 2022</topic><topic>synchrotron radiation</topic><topic>transmission function IERF</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hesse, Ronald</creatorcontrib><creatorcontrib>Denecke, Reinhard</creatorcontrib><creatorcontrib>Radnik, Jörg</creatorcontrib><collection>Wiley-Blackwell Open Access Collection</collection><collection>Wiley Online Library Free Content</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Surface and interface analysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hesse, Ronald</au><au>Denecke, Reinhard</au><au>Radnik, Jörg</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Testing and validating the improved estimation of the spectrometer‐transmission function with UNIFIT 2022</atitle><jtitle>Surface and interface analysis</jtitle><date>2022-10</date><risdate>2022</risdate><volume>54</volume><issue>10</issue><spage>1098</spage><epage>1104</epage><pages>1098-1104</pages><issn>0142-2421</issn><eissn>1096-9918</eissn><abstract>Recent developments of X‐ray photoelectron spectroscopy using excitation energies different from the usual lab‐sources Mg Kα and Al Kα, thus covering larger and different kinetic energy ranges, require more flexible approaches for determining the transmission function than the well‐established ones using reference spectra. Therefore, the approach using quantified peak areas (QPA) was refined allowing a more precise estimation of the transmission function. This refinement was tested by comparing the results obtained with the new version with former calculations. Furthermore, the obtained transmission function was validated by comparing the results with a transmission function using the reference spectrum of polyethylene. Additionally, an ionic liquid was used as reference for estimating the transmission function at the energy‐resolved HE‐SGM beamline at BESSY II. Comparison between the measured and stoichiometric composition shows that a transmission function was determined, which allows a reasonable quantification.</abstract><cop>Bognor Regis</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/sia.7131</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0003-1065-5791</orcidid><orcidid>https://orcid.org/0000-0003-0302-6815</orcidid><orcidid>https://orcid.org/0000-0001-8631-6687</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0142-2421 |
ispartof | Surface and interface analysis, 2022-10, Vol.54 (10), p.1098-1104 |
issn | 0142-2421 1096-9918 |
language | eng |
recordid | cdi_proquest_journals_2711189571 |
source | Wiley-Blackwell Read & Publish Collection |
subjects | Aluminum Estimation Excitation spectra Ionic liquids Kinetic energy Magnesium photoelectron spectroscopy Photoelectrons Polyethylenes quantification software UNIFIT 2022 synchrotron radiation transmission function IERF |
title | Testing and validating the improved estimation of the spectrometer‐transmission function with UNIFIT 2022 |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T21%3A30%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Testing%20and%20validating%20the%20improved%20estimation%20of%20the%20spectrometer%E2%80%90transmission%20function%20with%20UNIFIT%202022&rft.jtitle=Surface%20and%20interface%20analysis&rft.au=Hesse,%20Ronald&rft.date=2022-10&rft.volume=54&rft.issue=10&rft.spage=1098&rft.epage=1104&rft.pages=1098-1104&rft.issn=0142-2421&rft.eissn=1096-9918&rft_id=info:doi/10.1002/sia.7131&rft_dat=%3Cproquest_cross%3E2711189571%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c2881-9961a980d6259774797e98ef1d780c44f7c66e32c5fbbd06a61b66d18e93f9fd3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2711189571&rft_id=info:pmid/&rfr_iscdi=true |