Loading…

Evolution of Machine Learning in Tuberculosis Diagnosis: A Review of Deep Learning-Based Medical Applications

Tuberculosis (TB) is an infectious disease that has been a major menace to human health globally, causing millions of deaths yearly. Well-timed diagnosis and treatment are an arch to full recovery of the patient. Computer-aided diagnosis (CAD) has been a hopeful choice for TB diagnosis. Many CAD app...

Full description

Saved in:
Bibliographic Details
Published in:Electronics (Basel) 2022-09, Vol.11 (17), p.2634
Main Authors: Singh, Manisha, Pujar, Gurubasavaraj Veeranna, Kumar, Sethu Arun, Bhagyalalitha, Meduri, Akshatha, Handattu Shankaranarayana, Abuhaija, Belal, Alsoud, Anas Ratib, Abualigah, Laith, Beeraka, Narasimha M, Gandomi, Amir H
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Tuberculosis (TB) is an infectious disease that has been a major menace to human health globally, causing millions of deaths yearly. Well-timed diagnosis and treatment are an arch to full recovery of the patient. Computer-aided diagnosis (CAD) has been a hopeful choice for TB diagnosis. Many CAD approaches using machine learning have been applied for TB diagnosis, specific to the artificial intelligence (AI) domain, which has led to the resurgence of AI in the medical field. Deep learning (DL), a major branch of AI, provides bigger room for diagnosing deadly TB disease. This review is focused on the limitations of conventional TB diagnostics and a broad description of various machine learning algorithms and their applications in TB diagnosis. Furthermore, various deep learning methods integrated with other systems such as neuro-fuzzy logic, genetic algorithm, and artificial immune systems are discussed. Finally, multiple state-of-the-art tools such as CAD4TB, Lunit INSIGHT, qXR, and InferRead DR Chest are summarized to view AI-assisted future aspects in TB diagnosis.
ISSN:2079-9292
2079-9292
DOI:10.3390/electronics11172634