Loading…
Intelligent Hybrid Deep Learning Model for Breast Cancer Detection
Breast cancer (BC) is a type of tumor that develops in the breast cells and is one of the most common cancers in women. Women are also at risk from BC, the second most life-threatening disease after lung cancer. The early diagnosis and classification of BC are very important. Furthermore, manual det...
Saved in:
Published in: | Electronics (Basel) 2022-09, Vol.11 (17), p.2767 |
---|---|
Main Authors: | , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Breast cancer (BC) is a type of tumor that develops in the breast cells and is one of the most common cancers in women. Women are also at risk from BC, the second most life-threatening disease after lung cancer. The early diagnosis and classification of BC are very important. Furthermore, manual detection is time-consuming, laborious work, and, possibility of pathologist errors, and incorrect classification. To address the above highlighted issues, this paper presents a hybrid deep learning (CNN-GRU) model for the automatic detection of BC-IDC (+,−) using whole slide images (WSIs) of the well-known PCam Kaggle dataset. In this research, the proposed model used different layers of architectures of CNNs and GRU to detect breast IDC (+,−) cancer. The validation tests for quantitative results were carried out using each performance measure (accuracy (Acc), precision (Prec), sensitivity (Sens), specificity (Spec), AUC and F1-Score. The proposed model shows the best performance measures (accuracy 86.21%, precision 85.50%, sensitivity 85.60%, specificity 84.71%, F1-score 88%, while AUC 0.89 which overcomes the pathologist’s error and miss classification problem. Additionally, the efficiency of the proposed hybrid model was tested and compared with CNN-BiLSTM, CNN-LSTM, and current machine learning and deep learning (ML/DL) models, which indicated that the proposed hybrid model is more robust than recent ML/DL approaches. |
---|---|
ISSN: | 2079-9292 2079-9292 |
DOI: | 10.3390/electronics11172767 |