Loading…

A Hybrid Method for Keystroke Biometric User Identification

The generative model and discriminative model are the two categories of statistical models used in keystroke biometric areas. Generative models have the trait of handling missing or irregular data, and perform well for limited training data. Discriminative models are fast in making predictions for n...

Full description

Saved in:
Bibliographic Details
Published in:Electronics (Basel) 2022-09, Vol.11 (17), p.2782
Main Authors: Ali, Md L., Thakur, Kutub, Obaidat, Muath A.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c361t-d84ba6d6c6e2bad2b8e8f6804b8aca006d86ce586f776eb98382ae6bf1ab0b923
cites cdi_FETCH-LOGICAL-c361t-d84ba6d6c6e2bad2b8e8f6804b8aca006d86ce586f776eb98382ae6bf1ab0b923
container_end_page
container_issue 17
container_start_page 2782
container_title Electronics (Basel)
container_volume 11
creator Ali, Md L.
Thakur, Kutub
Obaidat, Muath A.
description The generative model and discriminative model are the two categories of statistical models used in keystroke biometric areas. Generative models have the trait of handling missing or irregular data, and perform well for limited training data. Discriminative models are fast in making predictions for new data, resulting in faster classification of new data compared to the generative models. In an attempt to build an efficient model for keystroke biometric user identification, this study proposes a hybrid POHMM/SVM method taking advantage of both generative and discriminative models. The partially observable hidden Markov model (POHMM) is an extension of the hidden Markov model (HMM), which has shown promising performance in user verification and handling missing or infrequent data. On the other hand, the support vector machine (SVM) has been a widely used discriminative model in keystroke biometric systems for the last decade and achieved a higher accuracy rate for large data sets. In the proposed model, features are extracted using the POHMM model, and a one-class support vector machine is used as the anomaly detector. For user identification, the study examines POHMM parameters using five different discriminative classifiers: support vector machines, k-nearest neighbor, random forest, multilayer perceptron (MLP) neural network, and logistic regression. The best accuracy of 91.3% (mean 0.868, SD 0.132) is achieved by the proposed hybrid POHMM/SVM approach among all generative and discriminative models.
doi_str_mv 10.3390/electronics11172782
format article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2711297289</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A745597585</galeid><sourcerecordid>A745597585</sourcerecordid><originalsourceid>FETCH-LOGICAL-c361t-d84ba6d6c6e2bad2b8e8f6804b8aca006d86ce586f776eb98382ae6bf1ab0b923</originalsourceid><addsrcrecordid>eNptkDtPAzEQhC0EElHIL6A5ifqCH3d-iCpEQCKCaEh98mMNDsk52E6Rf8-hUFCwza5WM99Ig9A1wVPGFL6FLdiSYh9sJoQIKiQ9QyOKhaoVVfT8z32JJjlv8DCKMMnwCN3NqsXRpOCqFygf0VU-puoZjnkgfkJ1H-IOSgq2WmdI1dJBX4IPVpcQ-yt04fU2w-R3j9H68eFtvqhXr0_L-WxVW8ZJqZ1sjOaOWw7UaEeNBOm5xI2R2mqMuZPcQiu5F4KDUZJJqoEbT7TBRlE2Rjcn7j7FrwPk0m3iIfVDZEcFIVQJKtWgmp5U73oLXeh9LGngW-1gF2zswYfhPxNN2yrRynYwsJPBpphzAt_tU9jpdOwI7n6a7f5pln0DxptusA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2711297289</pqid></control><display><type>article</type><title>A Hybrid Method for Keystroke Biometric User Identification</title><source>Publicly Available Content Database</source><creator>Ali, Md L. ; Thakur, Kutub ; Obaidat, Muath A.</creator><creatorcontrib>Ali, Md L. ; Thakur, Kutub ; Obaidat, Muath A.</creatorcontrib><description>The generative model and discriminative model are the two categories of statistical models used in keystroke biometric areas. Generative models have the trait of handling missing or irregular data, and perform well for limited training data. Discriminative models are fast in making predictions for new data, resulting in faster classification of new data compared to the generative models. In an attempt to build an efficient model for keystroke biometric user identification, this study proposes a hybrid POHMM/SVM method taking advantage of both generative and discriminative models. The partially observable hidden Markov model (POHMM) is an extension of the hidden Markov model (HMM), which has shown promising performance in user verification and handling missing or infrequent data. On the other hand, the support vector machine (SVM) has been a widely used discriminative model in keystroke biometric systems for the last decade and achieved a higher accuracy rate for large data sets. In the proposed model, features are extracted using the POHMM model, and a one-class support vector machine is used as the anomaly detector. For user identification, the study examines POHMM parameters using five different discriminative classifiers: support vector machines, k-nearest neighbor, random forest, multilayer perceptron (MLP) neural network, and logistic regression. The best accuracy of 91.3% (mean 0.868, SD 0.132) is achieved by the proposed hybrid POHMM/SVM approach among all generative and discriminative models.</description><identifier>ISSN: 2079-9292</identifier><identifier>EISSN: 2079-9292</identifier><identifier>DOI: 10.3390/electronics11172782</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Access control ; Accuracy ; Biometrics ; Computational linguistics ; Data security ; Datasets ; Feature extraction ; Language processing ; Machine learning ; Markov chains ; Methods ; Multilayer perceptrons ; Natural language interfaces ; Neural networks ; Parameter identification ; Passwords ; Physiology ; Sensors ; Statistical analysis ; Statistical models ; Support vector machines</subject><ispartof>Electronics (Basel), 2022-09, Vol.11 (17), p.2782</ispartof><rights>COPYRIGHT 2022 MDPI AG</rights><rights>2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c361t-d84ba6d6c6e2bad2b8e8f6804b8aca006d86ce586f776eb98382ae6bf1ab0b923</citedby><cites>FETCH-LOGICAL-c361t-d84ba6d6c6e2bad2b8e8f6804b8aca006d86ce586f776eb98382ae6bf1ab0b923</cites><orcidid>0000-0003-2963-7315 ; 0000-0001-8945-3230</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2711297289/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2711297289?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,25753,27924,27925,37012,44590,74998</link.rule.ids></links><search><creatorcontrib>Ali, Md L.</creatorcontrib><creatorcontrib>Thakur, Kutub</creatorcontrib><creatorcontrib>Obaidat, Muath A.</creatorcontrib><title>A Hybrid Method for Keystroke Biometric User Identification</title><title>Electronics (Basel)</title><description>The generative model and discriminative model are the two categories of statistical models used in keystroke biometric areas. Generative models have the trait of handling missing or irregular data, and perform well for limited training data. Discriminative models are fast in making predictions for new data, resulting in faster classification of new data compared to the generative models. In an attempt to build an efficient model for keystroke biometric user identification, this study proposes a hybrid POHMM/SVM method taking advantage of both generative and discriminative models. The partially observable hidden Markov model (POHMM) is an extension of the hidden Markov model (HMM), which has shown promising performance in user verification and handling missing or infrequent data. On the other hand, the support vector machine (SVM) has been a widely used discriminative model in keystroke biometric systems for the last decade and achieved a higher accuracy rate for large data sets. In the proposed model, features are extracted using the POHMM model, and a one-class support vector machine is used as the anomaly detector. For user identification, the study examines POHMM parameters using five different discriminative classifiers: support vector machines, k-nearest neighbor, random forest, multilayer perceptron (MLP) neural network, and logistic regression. The best accuracy of 91.3% (mean 0.868, SD 0.132) is achieved by the proposed hybrid POHMM/SVM approach among all generative and discriminative models.</description><subject>Access control</subject><subject>Accuracy</subject><subject>Biometrics</subject><subject>Computational linguistics</subject><subject>Data security</subject><subject>Datasets</subject><subject>Feature extraction</subject><subject>Language processing</subject><subject>Machine learning</subject><subject>Markov chains</subject><subject>Methods</subject><subject>Multilayer perceptrons</subject><subject>Natural language interfaces</subject><subject>Neural networks</subject><subject>Parameter identification</subject><subject>Passwords</subject><subject>Physiology</subject><subject>Sensors</subject><subject>Statistical analysis</subject><subject>Statistical models</subject><subject>Support vector machines</subject><issn>2079-9292</issn><issn>2079-9292</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNptkDtPAzEQhC0EElHIL6A5ifqCH3d-iCpEQCKCaEh98mMNDsk52E6Rf8-hUFCwza5WM99Ig9A1wVPGFL6FLdiSYh9sJoQIKiQ9QyOKhaoVVfT8z32JJjlv8DCKMMnwCN3NqsXRpOCqFygf0VU-puoZjnkgfkJ1H-IOSgq2WmdI1dJBX4IPVpcQ-yt04fU2w-R3j9H68eFtvqhXr0_L-WxVW8ZJqZ1sjOaOWw7UaEeNBOm5xI2R2mqMuZPcQiu5F4KDUZJJqoEbT7TBRlE2Rjcn7j7FrwPk0m3iIfVDZEcFIVQJKtWgmp5U73oLXeh9LGngW-1gF2zswYfhPxNN2yrRynYwsJPBpphzAt_tU9jpdOwI7n6a7f5pln0DxptusA</recordid><startdate>20220901</startdate><enddate>20220901</enddate><creator>Ali, Md L.</creator><creator>Thakur, Kutub</creator><creator>Obaidat, Muath A.</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L7M</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><orcidid>https://orcid.org/0000-0003-2963-7315</orcidid><orcidid>https://orcid.org/0000-0001-8945-3230</orcidid></search><sort><creationdate>20220901</creationdate><title>A Hybrid Method for Keystroke Biometric User Identification</title><author>Ali, Md L. ; Thakur, Kutub ; Obaidat, Muath A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c361t-d84ba6d6c6e2bad2b8e8f6804b8aca006d86ce586f776eb98382ae6bf1ab0b923</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Access control</topic><topic>Accuracy</topic><topic>Biometrics</topic><topic>Computational linguistics</topic><topic>Data security</topic><topic>Datasets</topic><topic>Feature extraction</topic><topic>Language processing</topic><topic>Machine learning</topic><topic>Markov chains</topic><topic>Methods</topic><topic>Multilayer perceptrons</topic><topic>Natural language interfaces</topic><topic>Neural networks</topic><topic>Parameter identification</topic><topic>Passwords</topic><topic>Physiology</topic><topic>Sensors</topic><topic>Statistical analysis</topic><topic>Statistical models</topic><topic>Support vector machines</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ali, Md L.</creatorcontrib><creatorcontrib>Thakur, Kutub</creatorcontrib><creatorcontrib>Obaidat, Muath A.</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><jtitle>Electronics (Basel)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ali, Md L.</au><au>Thakur, Kutub</au><au>Obaidat, Muath A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Hybrid Method for Keystroke Biometric User Identification</atitle><jtitle>Electronics (Basel)</jtitle><date>2022-09-01</date><risdate>2022</risdate><volume>11</volume><issue>17</issue><spage>2782</spage><pages>2782-</pages><issn>2079-9292</issn><eissn>2079-9292</eissn><abstract>The generative model and discriminative model are the two categories of statistical models used in keystroke biometric areas. Generative models have the trait of handling missing or irregular data, and perform well for limited training data. Discriminative models are fast in making predictions for new data, resulting in faster classification of new data compared to the generative models. In an attempt to build an efficient model for keystroke biometric user identification, this study proposes a hybrid POHMM/SVM method taking advantage of both generative and discriminative models. The partially observable hidden Markov model (POHMM) is an extension of the hidden Markov model (HMM), which has shown promising performance in user verification and handling missing or infrequent data. On the other hand, the support vector machine (SVM) has been a widely used discriminative model in keystroke biometric systems for the last decade and achieved a higher accuracy rate for large data sets. In the proposed model, features are extracted using the POHMM model, and a one-class support vector machine is used as the anomaly detector. For user identification, the study examines POHMM parameters using five different discriminative classifiers: support vector machines, k-nearest neighbor, random forest, multilayer perceptron (MLP) neural network, and logistic regression. The best accuracy of 91.3% (mean 0.868, SD 0.132) is achieved by the proposed hybrid POHMM/SVM approach among all generative and discriminative models.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/electronics11172782</doi><orcidid>https://orcid.org/0000-0003-2963-7315</orcidid><orcidid>https://orcid.org/0000-0001-8945-3230</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2079-9292
ispartof Electronics (Basel), 2022-09, Vol.11 (17), p.2782
issn 2079-9292
2079-9292
language eng
recordid cdi_proquest_journals_2711297289
source Publicly Available Content Database
subjects Access control
Accuracy
Biometrics
Computational linguistics
Data security
Datasets
Feature extraction
Language processing
Machine learning
Markov chains
Methods
Multilayer perceptrons
Natural language interfaces
Neural networks
Parameter identification
Passwords
Physiology
Sensors
Statistical analysis
Statistical models
Support vector machines
title A Hybrid Method for Keystroke Biometric User Identification
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T02%3A30%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Hybrid%20Method%20for%20Keystroke%20Biometric%20User%20Identification&rft.jtitle=Electronics%20(Basel)&rft.au=Ali,%20Md%20L.&rft.date=2022-09-01&rft.volume=11&rft.issue=17&rft.spage=2782&rft.pages=2782-&rft.issn=2079-9292&rft.eissn=2079-9292&rft_id=info:doi/10.3390/electronics11172782&rft_dat=%3Cgale_proqu%3EA745597585%3C/gale_proqu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c361t-d84ba6d6c6e2bad2b8e8f6804b8aca006d86ce586f776eb98382ae6bf1ab0b923%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2711297289&rft_id=info:pmid/&rft_galeid=A745597585&rfr_iscdi=true