Loading…
A Hybrid Method for Keystroke Biometric User Identification
The generative model and discriminative model are the two categories of statistical models used in keystroke biometric areas. Generative models have the trait of handling missing or irregular data, and perform well for limited training data. Discriminative models are fast in making predictions for n...
Saved in:
Published in: | Electronics (Basel) 2022-09, Vol.11 (17), p.2782 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c361t-d84ba6d6c6e2bad2b8e8f6804b8aca006d86ce586f776eb98382ae6bf1ab0b923 |
---|---|
cites | cdi_FETCH-LOGICAL-c361t-d84ba6d6c6e2bad2b8e8f6804b8aca006d86ce586f776eb98382ae6bf1ab0b923 |
container_end_page | |
container_issue | 17 |
container_start_page | 2782 |
container_title | Electronics (Basel) |
container_volume | 11 |
creator | Ali, Md L. Thakur, Kutub Obaidat, Muath A. |
description | The generative model and discriminative model are the two categories of statistical models used in keystroke biometric areas. Generative models have the trait of handling missing or irregular data, and perform well for limited training data. Discriminative models are fast in making predictions for new data, resulting in faster classification of new data compared to the generative models. In an attempt to build an efficient model for keystroke biometric user identification, this study proposes a hybrid POHMM/SVM method taking advantage of both generative and discriminative models. The partially observable hidden Markov model (POHMM) is an extension of the hidden Markov model (HMM), which has shown promising performance in user verification and handling missing or infrequent data. On the other hand, the support vector machine (SVM) has been a widely used discriminative model in keystroke biometric systems for the last decade and achieved a higher accuracy rate for large data sets. In the proposed model, features are extracted using the POHMM model, and a one-class support vector machine is used as the anomaly detector. For user identification, the study examines POHMM parameters using five different discriminative classifiers: support vector machines, k-nearest neighbor, random forest, multilayer perceptron (MLP) neural network, and logistic regression. The best accuracy of 91.3% (mean 0.868, SD 0.132) is achieved by the proposed hybrid POHMM/SVM approach among all generative and discriminative models. |
doi_str_mv | 10.3390/electronics11172782 |
format | article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2711297289</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A745597585</galeid><sourcerecordid>A745597585</sourcerecordid><originalsourceid>FETCH-LOGICAL-c361t-d84ba6d6c6e2bad2b8e8f6804b8aca006d86ce586f776eb98382ae6bf1ab0b923</originalsourceid><addsrcrecordid>eNptkDtPAzEQhC0EElHIL6A5ifqCH3d-iCpEQCKCaEh98mMNDsk52E6Rf8-hUFCwza5WM99Ig9A1wVPGFL6FLdiSYh9sJoQIKiQ9QyOKhaoVVfT8z32JJjlv8DCKMMnwCN3NqsXRpOCqFygf0VU-puoZjnkgfkJ1H-IOSgq2WmdI1dJBX4IPVpcQ-yt04fU2w-R3j9H68eFtvqhXr0_L-WxVW8ZJqZ1sjOaOWw7UaEeNBOm5xI2R2mqMuZPcQiu5F4KDUZJJqoEbT7TBRlE2Rjcn7j7FrwPk0m3iIfVDZEcFIVQJKtWgmp5U73oLXeh9LGngW-1gF2zswYfhPxNN2yrRynYwsJPBpphzAt_tU9jpdOwI7n6a7f5pln0DxptusA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2711297289</pqid></control><display><type>article</type><title>A Hybrid Method for Keystroke Biometric User Identification</title><source>Publicly Available Content Database</source><creator>Ali, Md L. ; Thakur, Kutub ; Obaidat, Muath A.</creator><creatorcontrib>Ali, Md L. ; Thakur, Kutub ; Obaidat, Muath A.</creatorcontrib><description>The generative model and discriminative model are the two categories of statistical models used in keystroke biometric areas. Generative models have the trait of handling missing or irregular data, and perform well for limited training data. Discriminative models are fast in making predictions for new data, resulting in faster classification of new data compared to the generative models. In an attempt to build an efficient model for keystroke biometric user identification, this study proposes a hybrid POHMM/SVM method taking advantage of both generative and discriminative models. The partially observable hidden Markov model (POHMM) is an extension of the hidden Markov model (HMM), which has shown promising performance in user verification and handling missing or infrequent data. On the other hand, the support vector machine (SVM) has been a widely used discriminative model in keystroke biometric systems for the last decade and achieved a higher accuracy rate for large data sets. In the proposed model, features are extracted using the POHMM model, and a one-class support vector machine is used as the anomaly detector. For user identification, the study examines POHMM parameters using five different discriminative classifiers: support vector machines, k-nearest neighbor, random forest, multilayer perceptron (MLP) neural network, and logistic regression. The best accuracy of 91.3% (mean 0.868, SD 0.132) is achieved by the proposed hybrid POHMM/SVM approach among all generative and discriminative models.</description><identifier>ISSN: 2079-9292</identifier><identifier>EISSN: 2079-9292</identifier><identifier>DOI: 10.3390/electronics11172782</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Access control ; Accuracy ; Biometrics ; Computational linguistics ; Data security ; Datasets ; Feature extraction ; Language processing ; Machine learning ; Markov chains ; Methods ; Multilayer perceptrons ; Natural language interfaces ; Neural networks ; Parameter identification ; Passwords ; Physiology ; Sensors ; Statistical analysis ; Statistical models ; Support vector machines</subject><ispartof>Electronics (Basel), 2022-09, Vol.11 (17), p.2782</ispartof><rights>COPYRIGHT 2022 MDPI AG</rights><rights>2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c361t-d84ba6d6c6e2bad2b8e8f6804b8aca006d86ce586f776eb98382ae6bf1ab0b923</citedby><cites>FETCH-LOGICAL-c361t-d84ba6d6c6e2bad2b8e8f6804b8aca006d86ce586f776eb98382ae6bf1ab0b923</cites><orcidid>0000-0003-2963-7315 ; 0000-0001-8945-3230</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2711297289/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2711297289?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,25753,27924,27925,37012,44590,74998</link.rule.ids></links><search><creatorcontrib>Ali, Md L.</creatorcontrib><creatorcontrib>Thakur, Kutub</creatorcontrib><creatorcontrib>Obaidat, Muath A.</creatorcontrib><title>A Hybrid Method for Keystroke Biometric User Identification</title><title>Electronics (Basel)</title><description>The generative model and discriminative model are the two categories of statistical models used in keystroke biometric areas. Generative models have the trait of handling missing or irregular data, and perform well for limited training data. Discriminative models are fast in making predictions for new data, resulting in faster classification of new data compared to the generative models. In an attempt to build an efficient model for keystroke biometric user identification, this study proposes a hybrid POHMM/SVM method taking advantage of both generative and discriminative models. The partially observable hidden Markov model (POHMM) is an extension of the hidden Markov model (HMM), which has shown promising performance in user verification and handling missing or infrequent data. On the other hand, the support vector machine (SVM) has been a widely used discriminative model in keystroke biometric systems for the last decade and achieved a higher accuracy rate for large data sets. In the proposed model, features are extracted using the POHMM model, and a one-class support vector machine is used as the anomaly detector. For user identification, the study examines POHMM parameters using five different discriminative classifiers: support vector machines, k-nearest neighbor, random forest, multilayer perceptron (MLP) neural network, and logistic regression. The best accuracy of 91.3% (mean 0.868, SD 0.132) is achieved by the proposed hybrid POHMM/SVM approach among all generative and discriminative models.</description><subject>Access control</subject><subject>Accuracy</subject><subject>Biometrics</subject><subject>Computational linguistics</subject><subject>Data security</subject><subject>Datasets</subject><subject>Feature extraction</subject><subject>Language processing</subject><subject>Machine learning</subject><subject>Markov chains</subject><subject>Methods</subject><subject>Multilayer perceptrons</subject><subject>Natural language interfaces</subject><subject>Neural networks</subject><subject>Parameter identification</subject><subject>Passwords</subject><subject>Physiology</subject><subject>Sensors</subject><subject>Statistical analysis</subject><subject>Statistical models</subject><subject>Support vector machines</subject><issn>2079-9292</issn><issn>2079-9292</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNptkDtPAzEQhC0EElHIL6A5ifqCH3d-iCpEQCKCaEh98mMNDsk52E6Rf8-hUFCwza5WM99Ig9A1wVPGFL6FLdiSYh9sJoQIKiQ9QyOKhaoVVfT8z32JJjlv8DCKMMnwCN3NqsXRpOCqFygf0VU-puoZjnkgfkJ1H-IOSgq2WmdI1dJBX4IPVpcQ-yt04fU2w-R3j9H68eFtvqhXr0_L-WxVW8ZJqZ1sjOaOWw7UaEeNBOm5xI2R2mqMuZPcQiu5F4KDUZJJqoEbT7TBRlE2Rjcn7j7FrwPk0m3iIfVDZEcFIVQJKtWgmp5U73oLXeh9LGngW-1gF2zswYfhPxNN2yrRynYwsJPBpphzAt_tU9jpdOwI7n6a7f5pln0DxptusA</recordid><startdate>20220901</startdate><enddate>20220901</enddate><creator>Ali, Md L.</creator><creator>Thakur, Kutub</creator><creator>Obaidat, Muath A.</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L7M</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><orcidid>https://orcid.org/0000-0003-2963-7315</orcidid><orcidid>https://orcid.org/0000-0001-8945-3230</orcidid></search><sort><creationdate>20220901</creationdate><title>A Hybrid Method for Keystroke Biometric User Identification</title><author>Ali, Md L. ; Thakur, Kutub ; Obaidat, Muath A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c361t-d84ba6d6c6e2bad2b8e8f6804b8aca006d86ce586f776eb98382ae6bf1ab0b923</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Access control</topic><topic>Accuracy</topic><topic>Biometrics</topic><topic>Computational linguistics</topic><topic>Data security</topic><topic>Datasets</topic><topic>Feature extraction</topic><topic>Language processing</topic><topic>Machine learning</topic><topic>Markov chains</topic><topic>Methods</topic><topic>Multilayer perceptrons</topic><topic>Natural language interfaces</topic><topic>Neural networks</topic><topic>Parameter identification</topic><topic>Passwords</topic><topic>Physiology</topic><topic>Sensors</topic><topic>Statistical analysis</topic><topic>Statistical models</topic><topic>Support vector machines</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ali, Md L.</creatorcontrib><creatorcontrib>Thakur, Kutub</creatorcontrib><creatorcontrib>Obaidat, Muath A.</creatorcontrib><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><jtitle>Electronics (Basel)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ali, Md L.</au><au>Thakur, Kutub</au><au>Obaidat, Muath A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Hybrid Method for Keystroke Biometric User Identification</atitle><jtitle>Electronics (Basel)</jtitle><date>2022-09-01</date><risdate>2022</risdate><volume>11</volume><issue>17</issue><spage>2782</spage><pages>2782-</pages><issn>2079-9292</issn><eissn>2079-9292</eissn><abstract>The generative model and discriminative model are the two categories of statistical models used in keystroke biometric areas. Generative models have the trait of handling missing or irregular data, and perform well for limited training data. Discriminative models are fast in making predictions for new data, resulting in faster classification of new data compared to the generative models. In an attempt to build an efficient model for keystroke biometric user identification, this study proposes a hybrid POHMM/SVM method taking advantage of both generative and discriminative models. The partially observable hidden Markov model (POHMM) is an extension of the hidden Markov model (HMM), which has shown promising performance in user verification and handling missing or infrequent data. On the other hand, the support vector machine (SVM) has been a widely used discriminative model in keystroke biometric systems for the last decade and achieved a higher accuracy rate for large data sets. In the proposed model, features are extracted using the POHMM model, and a one-class support vector machine is used as the anomaly detector. For user identification, the study examines POHMM parameters using five different discriminative classifiers: support vector machines, k-nearest neighbor, random forest, multilayer perceptron (MLP) neural network, and logistic regression. The best accuracy of 91.3% (mean 0.868, SD 0.132) is achieved by the proposed hybrid POHMM/SVM approach among all generative and discriminative models.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/electronics11172782</doi><orcidid>https://orcid.org/0000-0003-2963-7315</orcidid><orcidid>https://orcid.org/0000-0001-8945-3230</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2079-9292 |
ispartof | Electronics (Basel), 2022-09, Vol.11 (17), p.2782 |
issn | 2079-9292 2079-9292 |
language | eng |
recordid | cdi_proquest_journals_2711297289 |
source | Publicly Available Content Database |
subjects | Access control Accuracy Biometrics Computational linguistics Data security Datasets Feature extraction Language processing Machine learning Markov chains Methods Multilayer perceptrons Natural language interfaces Neural networks Parameter identification Passwords Physiology Sensors Statistical analysis Statistical models Support vector machines |
title | A Hybrid Method for Keystroke Biometric User Identification |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T02%3A30%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Hybrid%20Method%20for%20Keystroke%20Biometric%20User%20Identification&rft.jtitle=Electronics%20(Basel)&rft.au=Ali,%20Md%20L.&rft.date=2022-09-01&rft.volume=11&rft.issue=17&rft.spage=2782&rft.pages=2782-&rft.issn=2079-9292&rft.eissn=2079-9292&rft_id=info:doi/10.3390/electronics11172782&rft_dat=%3Cgale_proqu%3EA745597585%3C/gale_proqu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c361t-d84ba6d6c6e2bad2b8e8f6804b8aca006d86ce586f776eb98382ae6bf1ab0b923%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2711297289&rft_id=info:pmid/&rft_galeid=A745597585&rfr_iscdi=true |