Loading…
Using Aggregated Electrical Loads for the Multinodal Load Forecasting
Forecasting electrical loads is essential from a practical and economic point of view. With this forecast, it is possible to plan the supply of energy safely and continuously, and without interruption. In the literature, most of the works that perform electric load forecasting consider the global de...
Saved in:
Published in: | Journal of control, automation & electrical systems automation & electrical systems, 2022, Vol.33 (5), p.1592-1600 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c319t-10d84ddaa7953de4bc484afc175431c132793334db5449ea22f568855429cc063 |
---|---|
cites | cdi_FETCH-LOGICAL-c319t-10d84ddaa7953de4bc484afc175431c132793334db5449ea22f568855429cc063 |
container_end_page | 1600 |
container_issue | 5 |
container_start_page | 1592 |
container_title | Journal of control, automation & electrical systems |
container_volume | 33 |
creator | Moreira-Júnior, Joaquim R. Abreu, Thays Minussi, Carlos R. Lopes, Mara L. M. |
description | Forecasting electrical loads is essential from a practical and economic point of view. With this forecast, it is possible to plan the supply of energy safely and continuously, and without interruption. In the literature, most of the works that perform electric load forecasting consider the global demand, that is, the sum of the total energy consumption. This work proposes to carry out the load forecasting along with the buses of a distribution system (multinodal forecasting) based on the use of the load aggregation concept. The proposed method uses a Fuzzy-ARTMAP neural network to forecast electrical loads in substations (multinodal forecasting) 24 h ahead, with the main objective of studying and identifying possible aggregations of multinodal loads, aiming at improving the multinodal load forecasting. The database used was from an electricity distribution subsystem, consisting of nine substations. |
doi_str_mv | 10.1007/s40313-022-00906-1 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2712564198</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2712564198</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-10d84ddaa7953de4bc484afc175431c132793334db5449ea22f568855429cc063</originalsourceid><addsrcrecordid>eNp9kD1PwzAQhi0EEhX0DzBZYg7c-SOxx6pqAamIhc6WazshVYiLnQ78ewKpYGO60937IT2E3CDcIUB1nwVw5AUwVgBoKAs8IzOGWhZcaX3-uyu4JPOc9wCAChlKOSOrbW77hi6aJoXGDsHTVRfckFpnO7qJ1mdax0SHt0Cfj93Q9tGfHnQdU3A2j7fmmlzUtsthfppXZLtevS4fi83Lw9NysSkcRz0UCF4J762ttOQ-iJ0TStjaYSUFR4ecVZpzLvxOCqGDZayWpVJSCqadg5Jfkdsp95DixzHkwezjMfVjpWEVMlkK1GpUsUnlUsw5hdocUvtu06dBMN_EzETMjMTMDzGDo4lPpjyK-yakv-h_XF85X2wa</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2712564198</pqid></control><display><type>article</type><title>Using Aggregated Electrical Loads for the Multinodal Load Forecasting</title><source>Springer Link</source><creator>Moreira-Júnior, Joaquim R. ; Abreu, Thays ; Minussi, Carlos R. ; Lopes, Mara L. M.</creator><creatorcontrib>Moreira-Júnior, Joaquim R. ; Abreu, Thays ; Minussi, Carlos R. ; Lopes, Mara L. M.</creatorcontrib><description>Forecasting electrical loads is essential from a practical and economic point of view. With this forecast, it is possible to plan the supply of energy safely and continuously, and without interruption. In the literature, most of the works that perform electric load forecasting consider the global demand, that is, the sum of the total energy consumption. This work proposes to carry out the load forecasting along with the buses of a distribution system (multinodal forecasting) based on the use of the load aggregation concept. The proposed method uses a Fuzzy-ARTMAP neural network to forecast electrical loads in substations (multinodal forecasting) 24 h ahead, with the main objective of studying and identifying possible aggregations of multinodal loads, aiming at improving the multinodal load forecasting. The database used was from an electricity distribution subsystem, consisting of nine substations.</description><identifier>ISSN: 2195-3880</identifier><identifier>EISSN: 2195-3899</identifier><identifier>DOI: 10.1007/s40313-022-00906-1</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Control ; Control and Systems Theory ; Economic forecasting ; Electric power distribution ; Electrical Engineering ; Electrical loads ; Energy consumption ; Engineering ; Fuzzy logic ; Mechatronics ; Neural networks ; Robotics ; Robotics and Automation ; Substations ; Subsystems</subject><ispartof>Journal of control, automation & electrical systems, 2022, Vol.33 (5), p.1592-1600</ispartof><rights>Brazilian Society for Automatics--SBA 2022</rights><rights>Brazilian Society for Automatics--SBA 2022.</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-10d84ddaa7953de4bc484afc175431c132793334db5449ea22f568855429cc063</citedby><cites>FETCH-LOGICAL-c319t-10d84ddaa7953de4bc484afc175431c132793334db5449ea22f568855429cc063</cites><orcidid>0000-0003-0166-1962</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Moreira-Júnior, Joaquim R.</creatorcontrib><creatorcontrib>Abreu, Thays</creatorcontrib><creatorcontrib>Minussi, Carlos R.</creatorcontrib><creatorcontrib>Lopes, Mara L. M.</creatorcontrib><title>Using Aggregated Electrical Loads for the Multinodal Load Forecasting</title><title>Journal of control, automation & electrical systems</title><addtitle>J Control Autom Electr Syst</addtitle><description>Forecasting electrical loads is essential from a practical and economic point of view. With this forecast, it is possible to plan the supply of energy safely and continuously, and without interruption. In the literature, most of the works that perform electric load forecasting consider the global demand, that is, the sum of the total energy consumption. This work proposes to carry out the load forecasting along with the buses of a distribution system (multinodal forecasting) based on the use of the load aggregation concept. The proposed method uses a Fuzzy-ARTMAP neural network to forecast electrical loads in substations (multinodal forecasting) 24 h ahead, with the main objective of studying and identifying possible aggregations of multinodal loads, aiming at improving the multinodal load forecasting. The database used was from an electricity distribution subsystem, consisting of nine substations.</description><subject>Control</subject><subject>Control and Systems Theory</subject><subject>Economic forecasting</subject><subject>Electric power distribution</subject><subject>Electrical Engineering</subject><subject>Electrical loads</subject><subject>Energy consumption</subject><subject>Engineering</subject><subject>Fuzzy logic</subject><subject>Mechatronics</subject><subject>Neural networks</subject><subject>Robotics</subject><subject>Robotics and Automation</subject><subject>Substations</subject><subject>Subsystems</subject><issn>2195-3880</issn><issn>2195-3899</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kD1PwzAQhi0EEhX0DzBZYg7c-SOxx6pqAamIhc6WazshVYiLnQ78ewKpYGO60937IT2E3CDcIUB1nwVw5AUwVgBoKAs8IzOGWhZcaX3-uyu4JPOc9wCAChlKOSOrbW77hi6aJoXGDsHTVRfckFpnO7qJ1mdax0SHt0Cfj93Q9tGfHnQdU3A2j7fmmlzUtsthfppXZLtevS4fi83Lw9NysSkcRz0UCF4J762ttOQ-iJ0TStjaYSUFR4ecVZpzLvxOCqGDZayWpVJSCqadg5Jfkdsp95DixzHkwezjMfVjpWEVMlkK1GpUsUnlUsw5hdocUvtu06dBMN_EzETMjMTMDzGDo4lPpjyK-yakv-h_XF85X2wa</recordid><startdate>2022</startdate><enddate>2022</enddate><creator>Moreira-Júnior, Joaquim R.</creator><creator>Abreu, Thays</creator><creator>Minussi, Carlos R.</creator><creator>Lopes, Mara L. M.</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0003-0166-1962</orcidid></search><sort><creationdate>2022</creationdate><title>Using Aggregated Electrical Loads for the Multinodal Load Forecasting</title><author>Moreira-Júnior, Joaquim R. ; Abreu, Thays ; Minussi, Carlos R. ; Lopes, Mara L. M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-10d84ddaa7953de4bc484afc175431c132793334db5449ea22f568855429cc063</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Control</topic><topic>Control and Systems Theory</topic><topic>Economic forecasting</topic><topic>Electric power distribution</topic><topic>Electrical Engineering</topic><topic>Electrical loads</topic><topic>Energy consumption</topic><topic>Engineering</topic><topic>Fuzzy logic</topic><topic>Mechatronics</topic><topic>Neural networks</topic><topic>Robotics</topic><topic>Robotics and Automation</topic><topic>Substations</topic><topic>Subsystems</topic><toplevel>online_resources</toplevel><creatorcontrib>Moreira-Júnior, Joaquim R.</creatorcontrib><creatorcontrib>Abreu, Thays</creatorcontrib><creatorcontrib>Minussi, Carlos R.</creatorcontrib><creatorcontrib>Lopes, Mara L. M.</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of control, automation & electrical systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Moreira-Júnior, Joaquim R.</au><au>Abreu, Thays</au><au>Minussi, Carlos R.</au><au>Lopes, Mara L. M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Using Aggregated Electrical Loads for the Multinodal Load Forecasting</atitle><jtitle>Journal of control, automation & electrical systems</jtitle><stitle>J Control Autom Electr Syst</stitle><date>2022</date><risdate>2022</risdate><volume>33</volume><issue>5</issue><spage>1592</spage><epage>1600</epage><pages>1592-1600</pages><issn>2195-3880</issn><eissn>2195-3899</eissn><abstract>Forecasting electrical loads is essential from a practical and economic point of view. With this forecast, it is possible to plan the supply of energy safely and continuously, and without interruption. In the literature, most of the works that perform electric load forecasting consider the global demand, that is, the sum of the total energy consumption. This work proposes to carry out the load forecasting along with the buses of a distribution system (multinodal forecasting) based on the use of the load aggregation concept. The proposed method uses a Fuzzy-ARTMAP neural network to forecast electrical loads in substations (multinodal forecasting) 24 h ahead, with the main objective of studying and identifying possible aggregations of multinodal loads, aiming at improving the multinodal load forecasting. The database used was from an electricity distribution subsystem, consisting of nine substations.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s40313-022-00906-1</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0003-0166-1962</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2195-3880 |
ispartof | Journal of control, automation & electrical systems, 2022, Vol.33 (5), p.1592-1600 |
issn | 2195-3880 2195-3899 |
language | eng |
recordid | cdi_proquest_journals_2712564198 |
source | Springer Link |
subjects | Control Control and Systems Theory Economic forecasting Electric power distribution Electrical Engineering Electrical loads Energy consumption Engineering Fuzzy logic Mechatronics Neural networks Robotics Robotics and Automation Substations Subsystems |
title | Using Aggregated Electrical Loads for the Multinodal Load Forecasting |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T13%3A48%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Using%20Aggregated%20Electrical%20Loads%20for%20the%20Multinodal%20Load%20Forecasting&rft.jtitle=Journal%20of%20control,%20automation%20&%20electrical%20systems&rft.au=Moreira-J%C3%BAnior,%20Joaquim%20R.&rft.date=2022&rft.volume=33&rft.issue=5&rft.spage=1592&rft.epage=1600&rft.pages=1592-1600&rft.issn=2195-3880&rft.eissn=2195-3899&rft_id=info:doi/10.1007/s40313-022-00906-1&rft_dat=%3Cproquest_cross%3E2712564198%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c319t-10d84ddaa7953de4bc484afc175431c132793334db5449ea22f568855429cc063%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2712564198&rft_id=info:pmid/&rfr_iscdi=true |