Loading…

Using Aggregated Electrical Loads for the Multinodal Load Forecasting

Forecasting electrical loads is essential from a practical and economic point of view. With this forecast, it is possible to plan the supply of energy safely and continuously, and without interruption. In the literature, most of the works that perform electric load forecasting consider the global de...

Full description

Saved in:
Bibliographic Details
Published in:Journal of control, automation & electrical systems automation & electrical systems, 2022, Vol.33 (5), p.1592-1600
Main Authors: Moreira-Júnior, Joaquim R., Abreu, Thays, Minussi, Carlos R., Lopes, Mara L. M.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c319t-10d84ddaa7953de4bc484afc175431c132793334db5449ea22f568855429cc063
cites cdi_FETCH-LOGICAL-c319t-10d84ddaa7953de4bc484afc175431c132793334db5449ea22f568855429cc063
container_end_page 1600
container_issue 5
container_start_page 1592
container_title Journal of control, automation & electrical systems
container_volume 33
creator Moreira-Júnior, Joaquim R.
Abreu, Thays
Minussi, Carlos R.
Lopes, Mara L. M.
description Forecasting electrical loads is essential from a practical and economic point of view. With this forecast, it is possible to plan the supply of energy safely and continuously, and without interruption. In the literature, most of the works that perform electric load forecasting consider the global demand, that is, the sum of the total energy consumption. This work proposes to carry out the load forecasting along with the buses of a distribution system (multinodal forecasting) based on the use of the load aggregation concept. The proposed method uses a Fuzzy-ARTMAP neural network to forecast electrical loads in substations (multinodal forecasting) 24 h ahead, with the main objective of studying and identifying possible aggregations of multinodal loads, aiming at improving the multinodal load forecasting. The database used was from an electricity distribution subsystem, consisting of nine substations.
doi_str_mv 10.1007/s40313-022-00906-1
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2712564198</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2712564198</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-10d84ddaa7953de4bc484afc175431c132793334db5449ea22f568855429cc063</originalsourceid><addsrcrecordid>eNp9kD1PwzAQhi0EEhX0DzBZYg7c-SOxx6pqAamIhc6WazshVYiLnQ78ewKpYGO60937IT2E3CDcIUB1nwVw5AUwVgBoKAs8IzOGWhZcaX3-uyu4JPOc9wCAChlKOSOrbW77hi6aJoXGDsHTVRfckFpnO7qJ1mdax0SHt0Cfj93Q9tGfHnQdU3A2j7fmmlzUtsthfppXZLtevS4fi83Lw9NysSkcRz0UCF4J762ttOQ-iJ0TStjaYSUFR4ecVZpzLvxOCqGDZayWpVJSCqadg5Jfkdsp95DixzHkwezjMfVjpWEVMlkK1GpUsUnlUsw5hdocUvtu06dBMN_EzETMjMTMDzGDo4lPpjyK-yakv-h_XF85X2wa</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2712564198</pqid></control><display><type>article</type><title>Using Aggregated Electrical Loads for the Multinodal Load Forecasting</title><source>Springer Link</source><creator>Moreira-Júnior, Joaquim R. ; Abreu, Thays ; Minussi, Carlos R. ; Lopes, Mara L. M.</creator><creatorcontrib>Moreira-Júnior, Joaquim R. ; Abreu, Thays ; Minussi, Carlos R. ; Lopes, Mara L. M.</creatorcontrib><description>Forecasting electrical loads is essential from a practical and economic point of view. With this forecast, it is possible to plan the supply of energy safely and continuously, and without interruption. In the literature, most of the works that perform electric load forecasting consider the global demand, that is, the sum of the total energy consumption. This work proposes to carry out the load forecasting along with the buses of a distribution system (multinodal forecasting) based on the use of the load aggregation concept. The proposed method uses a Fuzzy-ARTMAP neural network to forecast electrical loads in substations (multinodal forecasting) 24 h ahead, with the main objective of studying and identifying possible aggregations of multinodal loads, aiming at improving the multinodal load forecasting. The database used was from an electricity distribution subsystem, consisting of nine substations.</description><identifier>ISSN: 2195-3880</identifier><identifier>EISSN: 2195-3899</identifier><identifier>DOI: 10.1007/s40313-022-00906-1</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Control ; Control and Systems Theory ; Economic forecasting ; Electric power distribution ; Electrical Engineering ; Electrical loads ; Energy consumption ; Engineering ; Fuzzy logic ; Mechatronics ; Neural networks ; Robotics ; Robotics and Automation ; Substations ; Subsystems</subject><ispartof>Journal of control, automation &amp; electrical systems, 2022, Vol.33 (5), p.1592-1600</ispartof><rights>Brazilian Society for Automatics--SBA 2022</rights><rights>Brazilian Society for Automatics--SBA 2022.</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-10d84ddaa7953de4bc484afc175431c132793334db5449ea22f568855429cc063</citedby><cites>FETCH-LOGICAL-c319t-10d84ddaa7953de4bc484afc175431c132793334db5449ea22f568855429cc063</cites><orcidid>0000-0003-0166-1962</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Moreira-Júnior, Joaquim R.</creatorcontrib><creatorcontrib>Abreu, Thays</creatorcontrib><creatorcontrib>Minussi, Carlos R.</creatorcontrib><creatorcontrib>Lopes, Mara L. M.</creatorcontrib><title>Using Aggregated Electrical Loads for the Multinodal Load Forecasting</title><title>Journal of control, automation &amp; electrical systems</title><addtitle>J Control Autom Electr Syst</addtitle><description>Forecasting electrical loads is essential from a practical and economic point of view. With this forecast, it is possible to plan the supply of energy safely and continuously, and without interruption. In the literature, most of the works that perform electric load forecasting consider the global demand, that is, the sum of the total energy consumption. This work proposes to carry out the load forecasting along with the buses of a distribution system (multinodal forecasting) based on the use of the load aggregation concept. The proposed method uses a Fuzzy-ARTMAP neural network to forecast electrical loads in substations (multinodal forecasting) 24 h ahead, with the main objective of studying and identifying possible aggregations of multinodal loads, aiming at improving the multinodal load forecasting. The database used was from an electricity distribution subsystem, consisting of nine substations.</description><subject>Control</subject><subject>Control and Systems Theory</subject><subject>Economic forecasting</subject><subject>Electric power distribution</subject><subject>Electrical Engineering</subject><subject>Electrical loads</subject><subject>Energy consumption</subject><subject>Engineering</subject><subject>Fuzzy logic</subject><subject>Mechatronics</subject><subject>Neural networks</subject><subject>Robotics</subject><subject>Robotics and Automation</subject><subject>Substations</subject><subject>Subsystems</subject><issn>2195-3880</issn><issn>2195-3899</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kD1PwzAQhi0EEhX0DzBZYg7c-SOxx6pqAamIhc6WazshVYiLnQ78ewKpYGO60937IT2E3CDcIUB1nwVw5AUwVgBoKAs8IzOGWhZcaX3-uyu4JPOc9wCAChlKOSOrbW77hi6aJoXGDsHTVRfckFpnO7qJ1mdax0SHt0Cfj93Q9tGfHnQdU3A2j7fmmlzUtsthfppXZLtevS4fi83Lw9NysSkcRz0UCF4J762ttOQ-iJ0TStjaYSUFR4ecVZpzLvxOCqGDZayWpVJSCqadg5Jfkdsp95DixzHkwezjMfVjpWEVMlkK1GpUsUnlUsw5hdocUvtu06dBMN_EzETMjMTMDzGDo4lPpjyK-yakv-h_XF85X2wa</recordid><startdate>2022</startdate><enddate>2022</enddate><creator>Moreira-Júnior, Joaquim R.</creator><creator>Abreu, Thays</creator><creator>Minussi, Carlos R.</creator><creator>Lopes, Mara L. M.</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0003-0166-1962</orcidid></search><sort><creationdate>2022</creationdate><title>Using Aggregated Electrical Loads for the Multinodal Load Forecasting</title><author>Moreira-Júnior, Joaquim R. ; Abreu, Thays ; Minussi, Carlos R. ; Lopes, Mara L. M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-10d84ddaa7953de4bc484afc175431c132793334db5449ea22f568855429cc063</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Control</topic><topic>Control and Systems Theory</topic><topic>Economic forecasting</topic><topic>Electric power distribution</topic><topic>Electrical Engineering</topic><topic>Electrical loads</topic><topic>Energy consumption</topic><topic>Engineering</topic><topic>Fuzzy logic</topic><topic>Mechatronics</topic><topic>Neural networks</topic><topic>Robotics</topic><topic>Robotics and Automation</topic><topic>Substations</topic><topic>Subsystems</topic><toplevel>online_resources</toplevel><creatorcontrib>Moreira-Júnior, Joaquim R.</creatorcontrib><creatorcontrib>Abreu, Thays</creatorcontrib><creatorcontrib>Minussi, Carlos R.</creatorcontrib><creatorcontrib>Lopes, Mara L. M.</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of control, automation &amp; electrical systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Moreira-Júnior, Joaquim R.</au><au>Abreu, Thays</au><au>Minussi, Carlos R.</au><au>Lopes, Mara L. M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Using Aggregated Electrical Loads for the Multinodal Load Forecasting</atitle><jtitle>Journal of control, automation &amp; electrical systems</jtitle><stitle>J Control Autom Electr Syst</stitle><date>2022</date><risdate>2022</risdate><volume>33</volume><issue>5</issue><spage>1592</spage><epage>1600</epage><pages>1592-1600</pages><issn>2195-3880</issn><eissn>2195-3899</eissn><abstract>Forecasting electrical loads is essential from a practical and economic point of view. With this forecast, it is possible to plan the supply of energy safely and continuously, and without interruption. In the literature, most of the works that perform electric load forecasting consider the global demand, that is, the sum of the total energy consumption. This work proposes to carry out the load forecasting along with the buses of a distribution system (multinodal forecasting) based on the use of the load aggregation concept. The proposed method uses a Fuzzy-ARTMAP neural network to forecast electrical loads in substations (multinodal forecasting) 24 h ahead, with the main objective of studying and identifying possible aggregations of multinodal loads, aiming at improving the multinodal load forecasting. The database used was from an electricity distribution subsystem, consisting of nine substations.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s40313-022-00906-1</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0003-0166-1962</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2195-3880
ispartof Journal of control, automation & electrical systems, 2022, Vol.33 (5), p.1592-1600
issn 2195-3880
2195-3899
language eng
recordid cdi_proquest_journals_2712564198
source Springer Link
subjects Control
Control and Systems Theory
Economic forecasting
Electric power distribution
Electrical Engineering
Electrical loads
Energy consumption
Engineering
Fuzzy logic
Mechatronics
Neural networks
Robotics
Robotics and Automation
Substations
Subsystems
title Using Aggregated Electrical Loads for the Multinodal Load Forecasting
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T13%3A48%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Using%20Aggregated%20Electrical%20Loads%20for%20the%20Multinodal%20Load%20Forecasting&rft.jtitle=Journal%20of%20control,%20automation%20&%20electrical%20systems&rft.au=Moreira-J%C3%BAnior,%20Joaquim%20R.&rft.date=2022&rft.volume=33&rft.issue=5&rft.spage=1592&rft.epage=1600&rft.pages=1592-1600&rft.issn=2195-3880&rft.eissn=2195-3899&rft_id=info:doi/10.1007/s40313-022-00906-1&rft_dat=%3Cproquest_cross%3E2712564198%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c319t-10d84ddaa7953de4bc484afc175431c132793334db5449ea22f568855429cc063%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2712564198&rft_id=info:pmid/&rfr_iscdi=true