Loading…

Microstructure of Bi-containing zirconium alloys

The effect of Bi addition (0.05 wt%–0.50 wt%) on the microstructure of zirconium alloys, including T5 (Zr–0.7Sn–1.0Nb–0.3Fe–0.1Cr), S5 (Zr–0.8Sn–0.35Nb–0.4Fe–0.1Cr), Zr–4(Zr–1.5Sn–0.2Fe–0.1Cr) and Zr–1Nb, was investigated by transmission electron microscopy (TEM), energy-dispersive spectroscopy (EDS...

Full description

Saved in:
Bibliographic Details
Published in:Rare metals 2022-10, Vol.41 (10), p.3566-3573
Main Authors: Zhao, Han-Pei, Yao, Mei-Yi, Huang, Jiao, Zhang, Jin-Long, Peng, Jian-Chao, Zhou, Bang-Xin
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c316t-97051e523ed78d7362eac568e3d062042cb0440e0638ea2846587a9b853e1243
cites cdi_FETCH-LOGICAL-c316t-97051e523ed78d7362eac568e3d062042cb0440e0638ea2846587a9b853e1243
container_end_page 3573
container_issue 10
container_start_page 3566
container_title Rare metals
container_volume 41
creator Zhao, Han-Pei
Yao, Mei-Yi
Huang, Jiao
Zhang, Jin-Long
Peng, Jian-Chao
Zhou, Bang-Xin
description The effect of Bi addition (0.05 wt%–0.50 wt%) on the microstructure of zirconium alloys, including T5 (Zr–0.7Sn–1.0Nb–0.3Fe–0.1Cr), S5 (Zr–0.8Sn–0.35Nb–0.4Fe–0.1Cr), Zr–4(Zr–1.5Sn–0.2Fe–0.1Cr) and Zr–1Nb, was investigated by transmission electron microscopy (TEM), energy-dispersive spectroscopy (EDS) and selected area electron diffraction (SAED). Results show that with the increase in Bi content, h-Zr(Fe,Cr,Nb) 2 , o-Zr(Fe,Sn,Bi) 2 and Zr–Fe–Cr–Nb–Sn–Bi second-phase particles (SPPs) precipitate successively in the T5 +  x Bi and S5 +  x Bi alloys; in the Zr–4 +  x Bi alloys, h-Zr(Fe,Cr) 2 , o-Zr(Fe,Sn,Bi) 2 , Zr–Fe–Cr–Sn–Bi and Zr–Fe–Cr–Bi SPPs are detected successively. While as for Zr–1Nb +  x Bi alloys, Bi-free SPPs appear. The addition of Bi promotes the precipitation of SPPs with Sn in the alloys. The concentration of Bi dissolved in α-Zr matrix increases with the decrease in Sn content in the alloys. Adding reasonable Bi has little influence on the solid solution content of Nb in α-Zr matrix.
doi_str_mv 10.1007/s12598-015-0677-0
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2712565951</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2712565951</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-97051e523ed78d7362eac568e3d062042cb0440e0638ea2846587a9b853e1243</originalsourceid><addsrcrecordid>eNp1kMtOwzAQRS0EEqXwAewisTbM2PEjS6h4SUVsurdcx6lcpUmxk0X5ehwFiRWrmZHunZl7CLlFuEcA9ZCQiUpTQEFBKkXhjCxQS0UVanGeewCkIBhekquU9gBlKSUsCHwEF_s0xNENY_RF3xRPgbq-G2zoQrcrvkPMUxgPhW3b_pSuyUVj2-RvfuuSbF6eN6s3uv58fV89rqnjKAdaKRDoBeO-VrpWXDJvnZDa8xokg5K5bX4BPEiuvWW6lEIrW2214B5ZyZfkbl57jP3X6NNg9v0Yu3zRMJWzSlEJzCqcVVOGFH1jjjEcbDwZBDNxMTMXk7mYiYuB7GGzJ2Vtt_Pxb_P_ph8xhGN1</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2712565951</pqid></control><display><type>article</type><title>Microstructure of Bi-containing zirconium alloys</title><source>Springer Nature</source><creator>Zhao, Han-Pei ; Yao, Mei-Yi ; Huang, Jiao ; Zhang, Jin-Long ; Peng, Jian-Chao ; Zhou, Bang-Xin</creator><creatorcontrib>Zhao, Han-Pei ; Yao, Mei-Yi ; Huang, Jiao ; Zhang, Jin-Long ; Peng, Jian-Chao ; Zhou, Bang-Xin</creatorcontrib><description>The effect of Bi addition (0.05 wt%–0.50 wt%) on the microstructure of zirconium alloys, including T5 (Zr–0.7Sn–1.0Nb–0.3Fe–0.1Cr), S5 (Zr–0.8Sn–0.35Nb–0.4Fe–0.1Cr), Zr–4(Zr–1.5Sn–0.2Fe–0.1Cr) and Zr–1Nb, was investigated by transmission electron microscopy (TEM), energy-dispersive spectroscopy (EDS) and selected area electron diffraction (SAED). Results show that with the increase in Bi content, h-Zr(Fe,Cr,Nb) 2 , o-Zr(Fe,Sn,Bi) 2 and Zr–Fe–Cr–Nb–Sn–Bi second-phase particles (SPPs) precipitate successively in the T5 +  x Bi and S5 +  x Bi alloys; in the Zr–4 +  x Bi alloys, h-Zr(Fe,Cr) 2 , o-Zr(Fe,Sn,Bi) 2 , Zr–Fe–Cr–Sn–Bi and Zr–Fe–Cr–Bi SPPs are detected successively. While as for Zr–1Nb +  x Bi alloys, Bi-free SPPs appear. The addition of Bi promotes the precipitation of SPPs with Sn in the alloys. The concentration of Bi dissolved in α-Zr matrix increases with the decrease in Sn content in the alloys. Adding reasonable Bi has little influence on the solid solution content of Nb in α-Zr matrix.</description><identifier>ISSN: 1001-0521</identifier><identifier>EISSN: 1867-7185</identifier><identifier>DOI: 10.1007/s12598-015-0677-0</identifier><language>eng</language><publisher>Beijing: Nonferrous Metals Society of China</publisher><subject>Biomaterials ; Bismuth ; Chemistry and Materials Science ; Chromium ; Electron diffraction ; Energy ; Iron ; Materials Engineering ; Materials Science ; Metallic Materials ; Microstructure ; Nanoscale Science and Technology ; Niobium ; Physical Chemistry ; Solid solutions ; Tin ; Zirconium base alloys</subject><ispartof>Rare metals, 2022-10, Vol.41 (10), p.3566-3573</ispartof><rights>The Nonferrous Metals Society of China and Springer-Verlag Berlin Heidelberg 2015</rights><rights>The Nonferrous Metals Society of China and Springer-Verlag Berlin Heidelberg 2015.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-97051e523ed78d7362eac568e3d062042cb0440e0638ea2846587a9b853e1243</citedby><cites>FETCH-LOGICAL-c316t-97051e523ed78d7362eac568e3d062042cb0440e0638ea2846587a9b853e1243</cites><orcidid>0000-0002-0031-3811</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Zhao, Han-Pei</creatorcontrib><creatorcontrib>Yao, Mei-Yi</creatorcontrib><creatorcontrib>Huang, Jiao</creatorcontrib><creatorcontrib>Zhang, Jin-Long</creatorcontrib><creatorcontrib>Peng, Jian-Chao</creatorcontrib><creatorcontrib>Zhou, Bang-Xin</creatorcontrib><title>Microstructure of Bi-containing zirconium alloys</title><title>Rare metals</title><addtitle>Rare Met</addtitle><description>The effect of Bi addition (0.05 wt%–0.50 wt%) on the microstructure of zirconium alloys, including T5 (Zr–0.7Sn–1.0Nb–0.3Fe–0.1Cr), S5 (Zr–0.8Sn–0.35Nb–0.4Fe–0.1Cr), Zr–4(Zr–1.5Sn–0.2Fe–0.1Cr) and Zr–1Nb, was investigated by transmission electron microscopy (TEM), energy-dispersive spectroscopy (EDS) and selected area electron diffraction (SAED). Results show that with the increase in Bi content, h-Zr(Fe,Cr,Nb) 2 , o-Zr(Fe,Sn,Bi) 2 and Zr–Fe–Cr–Nb–Sn–Bi second-phase particles (SPPs) precipitate successively in the T5 +  x Bi and S5 +  x Bi alloys; in the Zr–4 +  x Bi alloys, h-Zr(Fe,Cr) 2 , o-Zr(Fe,Sn,Bi) 2 , Zr–Fe–Cr–Sn–Bi and Zr–Fe–Cr–Bi SPPs are detected successively. While as for Zr–1Nb +  x Bi alloys, Bi-free SPPs appear. The addition of Bi promotes the precipitation of SPPs with Sn in the alloys. The concentration of Bi dissolved in α-Zr matrix increases with the decrease in Sn content in the alloys. Adding reasonable Bi has little influence on the solid solution content of Nb in α-Zr matrix.</description><subject>Biomaterials</subject><subject>Bismuth</subject><subject>Chemistry and Materials Science</subject><subject>Chromium</subject><subject>Electron diffraction</subject><subject>Energy</subject><subject>Iron</subject><subject>Materials Engineering</subject><subject>Materials Science</subject><subject>Metallic Materials</subject><subject>Microstructure</subject><subject>Nanoscale Science and Technology</subject><subject>Niobium</subject><subject>Physical Chemistry</subject><subject>Solid solutions</subject><subject>Tin</subject><subject>Zirconium base alloys</subject><issn>1001-0521</issn><issn>1867-7185</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp1kMtOwzAQRS0EEqXwAewisTbM2PEjS6h4SUVsurdcx6lcpUmxk0X5ehwFiRWrmZHunZl7CLlFuEcA9ZCQiUpTQEFBKkXhjCxQS0UVanGeewCkIBhekquU9gBlKSUsCHwEF_s0xNENY_RF3xRPgbq-G2zoQrcrvkPMUxgPhW3b_pSuyUVj2-RvfuuSbF6eN6s3uv58fV89rqnjKAdaKRDoBeO-VrpWXDJvnZDa8xokg5K5bX4BPEiuvWW6lEIrW2214B5ZyZfkbl57jP3X6NNg9v0Yu3zRMJWzSlEJzCqcVVOGFH1jjjEcbDwZBDNxMTMXk7mYiYuB7GGzJ2Vtt_Pxb_P_ph8xhGN1</recordid><startdate>20221001</startdate><enddate>20221001</enddate><creator>Zhao, Han-Pei</creator><creator>Yao, Mei-Yi</creator><creator>Huang, Jiao</creator><creator>Zhang, Jin-Long</creator><creator>Peng, Jian-Chao</creator><creator>Zhou, Bang-Xin</creator><general>Nonferrous Metals Society of China</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><orcidid>https://orcid.org/0000-0002-0031-3811</orcidid></search><sort><creationdate>20221001</creationdate><title>Microstructure of Bi-containing zirconium alloys</title><author>Zhao, Han-Pei ; Yao, Mei-Yi ; Huang, Jiao ; Zhang, Jin-Long ; Peng, Jian-Chao ; Zhou, Bang-Xin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-97051e523ed78d7362eac568e3d062042cb0440e0638ea2846587a9b853e1243</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Biomaterials</topic><topic>Bismuth</topic><topic>Chemistry and Materials Science</topic><topic>Chromium</topic><topic>Electron diffraction</topic><topic>Energy</topic><topic>Iron</topic><topic>Materials Engineering</topic><topic>Materials Science</topic><topic>Metallic Materials</topic><topic>Microstructure</topic><topic>Nanoscale Science and Technology</topic><topic>Niobium</topic><topic>Physical Chemistry</topic><topic>Solid solutions</topic><topic>Tin</topic><topic>Zirconium base alloys</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhao, Han-Pei</creatorcontrib><creatorcontrib>Yao, Mei-Yi</creatorcontrib><creatorcontrib>Huang, Jiao</creatorcontrib><creatorcontrib>Zhang, Jin-Long</creatorcontrib><creatorcontrib>Peng, Jian-Chao</creatorcontrib><creatorcontrib>Zhou, Bang-Xin</creatorcontrib><collection>CrossRef</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Rare metals</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhao, Han-Pei</au><au>Yao, Mei-Yi</au><au>Huang, Jiao</au><au>Zhang, Jin-Long</au><au>Peng, Jian-Chao</au><au>Zhou, Bang-Xin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Microstructure of Bi-containing zirconium alloys</atitle><jtitle>Rare metals</jtitle><stitle>Rare Met</stitle><date>2022-10-01</date><risdate>2022</risdate><volume>41</volume><issue>10</issue><spage>3566</spage><epage>3573</epage><pages>3566-3573</pages><issn>1001-0521</issn><eissn>1867-7185</eissn><abstract>The effect of Bi addition (0.05 wt%–0.50 wt%) on the microstructure of zirconium alloys, including T5 (Zr–0.7Sn–1.0Nb–0.3Fe–0.1Cr), S5 (Zr–0.8Sn–0.35Nb–0.4Fe–0.1Cr), Zr–4(Zr–1.5Sn–0.2Fe–0.1Cr) and Zr–1Nb, was investigated by transmission electron microscopy (TEM), energy-dispersive spectroscopy (EDS) and selected area electron diffraction (SAED). Results show that with the increase in Bi content, h-Zr(Fe,Cr,Nb) 2 , o-Zr(Fe,Sn,Bi) 2 and Zr–Fe–Cr–Nb–Sn–Bi second-phase particles (SPPs) precipitate successively in the T5 +  x Bi and S5 +  x Bi alloys; in the Zr–4 +  x Bi alloys, h-Zr(Fe,Cr) 2 , o-Zr(Fe,Sn,Bi) 2 , Zr–Fe–Cr–Sn–Bi and Zr–Fe–Cr–Bi SPPs are detected successively. While as for Zr–1Nb +  x Bi alloys, Bi-free SPPs appear. The addition of Bi promotes the precipitation of SPPs with Sn in the alloys. The concentration of Bi dissolved in α-Zr matrix increases with the decrease in Sn content in the alloys. Adding reasonable Bi has little influence on the solid solution content of Nb in α-Zr matrix.</abstract><cop>Beijing</cop><pub>Nonferrous Metals Society of China</pub><doi>10.1007/s12598-015-0677-0</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-0031-3811</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1001-0521
ispartof Rare metals, 2022-10, Vol.41 (10), p.3566-3573
issn 1001-0521
1867-7185
language eng
recordid cdi_proquest_journals_2712565951
source Springer Nature
subjects Biomaterials
Bismuth
Chemistry and Materials Science
Chromium
Electron diffraction
Energy
Iron
Materials Engineering
Materials Science
Metallic Materials
Microstructure
Nanoscale Science and Technology
Niobium
Physical Chemistry
Solid solutions
Tin
Zirconium base alloys
title Microstructure of Bi-containing zirconium alloys
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T19%3A53%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Microstructure%20of%20Bi-containing%20zirconium%20alloys&rft.jtitle=Rare%20metals&rft.au=Zhao,%20Han-Pei&rft.date=2022-10-01&rft.volume=41&rft.issue=10&rft.spage=3566&rft.epage=3573&rft.pages=3566-3573&rft.issn=1001-0521&rft.eissn=1867-7185&rft_id=info:doi/10.1007/s12598-015-0677-0&rft_dat=%3Cproquest_cross%3E2712565951%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c316t-97051e523ed78d7362eac568e3d062042cb0440e0638ea2846587a9b853e1243%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2712565951&rft_id=info:pmid/&rfr_iscdi=true