Loading…
Microstructure of Bi-containing zirconium alloys
The effect of Bi addition (0.05 wt%–0.50 wt%) on the microstructure of zirconium alloys, including T5 (Zr–0.7Sn–1.0Nb–0.3Fe–0.1Cr), S5 (Zr–0.8Sn–0.35Nb–0.4Fe–0.1Cr), Zr–4(Zr–1.5Sn–0.2Fe–0.1Cr) and Zr–1Nb, was investigated by transmission electron microscopy (TEM), energy-dispersive spectroscopy (EDS...
Saved in:
Published in: | Rare metals 2022-10, Vol.41 (10), p.3566-3573 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c316t-97051e523ed78d7362eac568e3d062042cb0440e0638ea2846587a9b853e1243 |
---|---|
cites | cdi_FETCH-LOGICAL-c316t-97051e523ed78d7362eac568e3d062042cb0440e0638ea2846587a9b853e1243 |
container_end_page | 3573 |
container_issue | 10 |
container_start_page | 3566 |
container_title | Rare metals |
container_volume | 41 |
creator | Zhao, Han-Pei Yao, Mei-Yi Huang, Jiao Zhang, Jin-Long Peng, Jian-Chao Zhou, Bang-Xin |
description | The effect of Bi addition (0.05 wt%–0.50 wt%) on the microstructure of zirconium alloys, including T5 (Zr–0.7Sn–1.0Nb–0.3Fe–0.1Cr), S5 (Zr–0.8Sn–0.35Nb–0.4Fe–0.1Cr), Zr–4(Zr–1.5Sn–0.2Fe–0.1Cr) and Zr–1Nb, was investigated by transmission electron microscopy (TEM), energy-dispersive spectroscopy (EDS) and selected area electron diffraction (SAED). Results show that with the increase in Bi content, h-Zr(Fe,Cr,Nb)
2
, o-Zr(Fe,Sn,Bi)
2
and Zr–Fe–Cr–Nb–Sn–Bi second-phase particles (SPPs) precipitate successively in the T5 +
x
Bi and S5 +
x
Bi alloys; in the Zr–4 +
x
Bi alloys, h-Zr(Fe,Cr)
2
, o-Zr(Fe,Sn,Bi)
2
, Zr–Fe–Cr–Sn–Bi and Zr–Fe–Cr–Bi SPPs are detected successively. While as for Zr–1Nb +
x
Bi alloys, Bi-free SPPs appear. The addition of Bi promotes the precipitation of SPPs with Sn in the alloys. The concentration of Bi dissolved in α-Zr matrix increases with the decrease in Sn content in the alloys. Adding reasonable Bi has little influence on the solid solution content of Nb in α-Zr matrix. |
doi_str_mv | 10.1007/s12598-015-0677-0 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2712565951</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2712565951</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-97051e523ed78d7362eac568e3d062042cb0440e0638ea2846587a9b853e1243</originalsourceid><addsrcrecordid>eNp1kMtOwzAQRS0EEqXwAewisTbM2PEjS6h4SUVsurdcx6lcpUmxk0X5ehwFiRWrmZHunZl7CLlFuEcA9ZCQiUpTQEFBKkXhjCxQS0UVanGeewCkIBhekquU9gBlKSUsCHwEF_s0xNENY_RF3xRPgbq-G2zoQrcrvkPMUxgPhW3b_pSuyUVj2-RvfuuSbF6eN6s3uv58fV89rqnjKAdaKRDoBeO-VrpWXDJvnZDa8xokg5K5bX4BPEiuvWW6lEIrW2214B5ZyZfkbl57jP3X6NNg9v0Yu3zRMJWzSlEJzCqcVVOGFH1jjjEcbDwZBDNxMTMXk7mYiYuB7GGzJ2Vtt_Pxb_P_ph8xhGN1</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2712565951</pqid></control><display><type>article</type><title>Microstructure of Bi-containing zirconium alloys</title><source>Springer Nature</source><creator>Zhao, Han-Pei ; Yao, Mei-Yi ; Huang, Jiao ; Zhang, Jin-Long ; Peng, Jian-Chao ; Zhou, Bang-Xin</creator><creatorcontrib>Zhao, Han-Pei ; Yao, Mei-Yi ; Huang, Jiao ; Zhang, Jin-Long ; Peng, Jian-Chao ; Zhou, Bang-Xin</creatorcontrib><description>The effect of Bi addition (0.05 wt%–0.50 wt%) on the microstructure of zirconium alloys, including T5 (Zr–0.7Sn–1.0Nb–0.3Fe–0.1Cr), S5 (Zr–0.8Sn–0.35Nb–0.4Fe–0.1Cr), Zr–4(Zr–1.5Sn–0.2Fe–0.1Cr) and Zr–1Nb, was investigated by transmission electron microscopy (TEM), energy-dispersive spectroscopy (EDS) and selected area electron diffraction (SAED). Results show that with the increase in Bi content, h-Zr(Fe,Cr,Nb)
2
, o-Zr(Fe,Sn,Bi)
2
and Zr–Fe–Cr–Nb–Sn–Bi second-phase particles (SPPs) precipitate successively in the T5 +
x
Bi and S5 +
x
Bi alloys; in the Zr–4 +
x
Bi alloys, h-Zr(Fe,Cr)
2
, o-Zr(Fe,Sn,Bi)
2
, Zr–Fe–Cr–Sn–Bi and Zr–Fe–Cr–Bi SPPs are detected successively. While as for Zr–1Nb +
x
Bi alloys, Bi-free SPPs appear. The addition of Bi promotes the precipitation of SPPs with Sn in the alloys. The concentration of Bi dissolved in α-Zr matrix increases with the decrease in Sn content in the alloys. Adding reasonable Bi has little influence on the solid solution content of Nb in α-Zr matrix.</description><identifier>ISSN: 1001-0521</identifier><identifier>EISSN: 1867-7185</identifier><identifier>DOI: 10.1007/s12598-015-0677-0</identifier><language>eng</language><publisher>Beijing: Nonferrous Metals Society of China</publisher><subject>Biomaterials ; Bismuth ; Chemistry and Materials Science ; Chromium ; Electron diffraction ; Energy ; Iron ; Materials Engineering ; Materials Science ; Metallic Materials ; Microstructure ; Nanoscale Science and Technology ; Niobium ; Physical Chemistry ; Solid solutions ; Tin ; Zirconium base alloys</subject><ispartof>Rare metals, 2022-10, Vol.41 (10), p.3566-3573</ispartof><rights>The Nonferrous Metals Society of China and Springer-Verlag Berlin Heidelberg 2015</rights><rights>The Nonferrous Metals Society of China and Springer-Verlag Berlin Heidelberg 2015.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-97051e523ed78d7362eac568e3d062042cb0440e0638ea2846587a9b853e1243</citedby><cites>FETCH-LOGICAL-c316t-97051e523ed78d7362eac568e3d062042cb0440e0638ea2846587a9b853e1243</cites><orcidid>0000-0002-0031-3811</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Zhao, Han-Pei</creatorcontrib><creatorcontrib>Yao, Mei-Yi</creatorcontrib><creatorcontrib>Huang, Jiao</creatorcontrib><creatorcontrib>Zhang, Jin-Long</creatorcontrib><creatorcontrib>Peng, Jian-Chao</creatorcontrib><creatorcontrib>Zhou, Bang-Xin</creatorcontrib><title>Microstructure of Bi-containing zirconium alloys</title><title>Rare metals</title><addtitle>Rare Met</addtitle><description>The effect of Bi addition (0.05 wt%–0.50 wt%) on the microstructure of zirconium alloys, including T5 (Zr–0.7Sn–1.0Nb–0.3Fe–0.1Cr), S5 (Zr–0.8Sn–0.35Nb–0.4Fe–0.1Cr), Zr–4(Zr–1.5Sn–0.2Fe–0.1Cr) and Zr–1Nb, was investigated by transmission electron microscopy (TEM), energy-dispersive spectroscopy (EDS) and selected area electron diffraction (SAED). Results show that with the increase in Bi content, h-Zr(Fe,Cr,Nb)
2
, o-Zr(Fe,Sn,Bi)
2
and Zr–Fe–Cr–Nb–Sn–Bi second-phase particles (SPPs) precipitate successively in the T5 +
x
Bi and S5 +
x
Bi alloys; in the Zr–4 +
x
Bi alloys, h-Zr(Fe,Cr)
2
, o-Zr(Fe,Sn,Bi)
2
, Zr–Fe–Cr–Sn–Bi and Zr–Fe–Cr–Bi SPPs are detected successively. While as for Zr–1Nb +
x
Bi alloys, Bi-free SPPs appear. The addition of Bi promotes the precipitation of SPPs with Sn in the alloys. The concentration of Bi dissolved in α-Zr matrix increases with the decrease in Sn content in the alloys. Adding reasonable Bi has little influence on the solid solution content of Nb in α-Zr matrix.</description><subject>Biomaterials</subject><subject>Bismuth</subject><subject>Chemistry and Materials Science</subject><subject>Chromium</subject><subject>Electron diffraction</subject><subject>Energy</subject><subject>Iron</subject><subject>Materials Engineering</subject><subject>Materials Science</subject><subject>Metallic Materials</subject><subject>Microstructure</subject><subject>Nanoscale Science and Technology</subject><subject>Niobium</subject><subject>Physical Chemistry</subject><subject>Solid solutions</subject><subject>Tin</subject><subject>Zirconium base alloys</subject><issn>1001-0521</issn><issn>1867-7185</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp1kMtOwzAQRS0EEqXwAewisTbM2PEjS6h4SUVsurdcx6lcpUmxk0X5ehwFiRWrmZHunZl7CLlFuEcA9ZCQiUpTQEFBKkXhjCxQS0UVanGeewCkIBhekquU9gBlKSUsCHwEF_s0xNENY_RF3xRPgbq-G2zoQrcrvkPMUxgPhW3b_pSuyUVj2-RvfuuSbF6eN6s3uv58fV89rqnjKAdaKRDoBeO-VrpWXDJvnZDa8xokg5K5bX4BPEiuvWW6lEIrW2214B5ZyZfkbl57jP3X6NNg9v0Yu3zRMJWzSlEJzCqcVVOGFH1jjjEcbDwZBDNxMTMXk7mYiYuB7GGzJ2Vtt_Pxb_P_ph8xhGN1</recordid><startdate>20221001</startdate><enddate>20221001</enddate><creator>Zhao, Han-Pei</creator><creator>Yao, Mei-Yi</creator><creator>Huang, Jiao</creator><creator>Zhang, Jin-Long</creator><creator>Peng, Jian-Chao</creator><creator>Zhou, Bang-Xin</creator><general>Nonferrous Metals Society of China</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><orcidid>https://orcid.org/0000-0002-0031-3811</orcidid></search><sort><creationdate>20221001</creationdate><title>Microstructure of Bi-containing zirconium alloys</title><author>Zhao, Han-Pei ; Yao, Mei-Yi ; Huang, Jiao ; Zhang, Jin-Long ; Peng, Jian-Chao ; Zhou, Bang-Xin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-97051e523ed78d7362eac568e3d062042cb0440e0638ea2846587a9b853e1243</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Biomaterials</topic><topic>Bismuth</topic><topic>Chemistry and Materials Science</topic><topic>Chromium</topic><topic>Electron diffraction</topic><topic>Energy</topic><topic>Iron</topic><topic>Materials Engineering</topic><topic>Materials Science</topic><topic>Metallic Materials</topic><topic>Microstructure</topic><topic>Nanoscale Science and Technology</topic><topic>Niobium</topic><topic>Physical Chemistry</topic><topic>Solid solutions</topic><topic>Tin</topic><topic>Zirconium base alloys</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhao, Han-Pei</creatorcontrib><creatorcontrib>Yao, Mei-Yi</creatorcontrib><creatorcontrib>Huang, Jiao</creatorcontrib><creatorcontrib>Zhang, Jin-Long</creatorcontrib><creatorcontrib>Peng, Jian-Chao</creatorcontrib><creatorcontrib>Zhou, Bang-Xin</creatorcontrib><collection>CrossRef</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Rare metals</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhao, Han-Pei</au><au>Yao, Mei-Yi</au><au>Huang, Jiao</au><au>Zhang, Jin-Long</au><au>Peng, Jian-Chao</au><au>Zhou, Bang-Xin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Microstructure of Bi-containing zirconium alloys</atitle><jtitle>Rare metals</jtitle><stitle>Rare Met</stitle><date>2022-10-01</date><risdate>2022</risdate><volume>41</volume><issue>10</issue><spage>3566</spage><epage>3573</epage><pages>3566-3573</pages><issn>1001-0521</issn><eissn>1867-7185</eissn><abstract>The effect of Bi addition (0.05 wt%–0.50 wt%) on the microstructure of zirconium alloys, including T5 (Zr–0.7Sn–1.0Nb–0.3Fe–0.1Cr), S5 (Zr–0.8Sn–0.35Nb–0.4Fe–0.1Cr), Zr–4(Zr–1.5Sn–0.2Fe–0.1Cr) and Zr–1Nb, was investigated by transmission electron microscopy (TEM), energy-dispersive spectroscopy (EDS) and selected area electron diffraction (SAED). Results show that with the increase in Bi content, h-Zr(Fe,Cr,Nb)
2
, o-Zr(Fe,Sn,Bi)
2
and Zr–Fe–Cr–Nb–Sn–Bi second-phase particles (SPPs) precipitate successively in the T5 +
x
Bi and S5 +
x
Bi alloys; in the Zr–4 +
x
Bi alloys, h-Zr(Fe,Cr)
2
, o-Zr(Fe,Sn,Bi)
2
, Zr–Fe–Cr–Sn–Bi and Zr–Fe–Cr–Bi SPPs are detected successively. While as for Zr–1Nb +
x
Bi alloys, Bi-free SPPs appear. The addition of Bi promotes the precipitation of SPPs with Sn in the alloys. The concentration of Bi dissolved in α-Zr matrix increases with the decrease in Sn content in the alloys. Adding reasonable Bi has little influence on the solid solution content of Nb in α-Zr matrix.</abstract><cop>Beijing</cop><pub>Nonferrous Metals Society of China</pub><doi>10.1007/s12598-015-0677-0</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-0031-3811</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1001-0521 |
ispartof | Rare metals, 2022-10, Vol.41 (10), p.3566-3573 |
issn | 1001-0521 1867-7185 |
language | eng |
recordid | cdi_proquest_journals_2712565951 |
source | Springer Nature |
subjects | Biomaterials Bismuth Chemistry and Materials Science Chromium Electron diffraction Energy Iron Materials Engineering Materials Science Metallic Materials Microstructure Nanoscale Science and Technology Niobium Physical Chemistry Solid solutions Tin Zirconium base alloys |
title | Microstructure of Bi-containing zirconium alloys |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T19%3A53%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Microstructure%20of%20Bi-containing%20zirconium%20alloys&rft.jtitle=Rare%20metals&rft.au=Zhao,%20Han-Pei&rft.date=2022-10-01&rft.volume=41&rft.issue=10&rft.spage=3566&rft.epage=3573&rft.pages=3566-3573&rft.issn=1001-0521&rft.eissn=1867-7185&rft_id=info:doi/10.1007/s12598-015-0677-0&rft_dat=%3Cproquest_cross%3E2712565951%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c316t-97051e523ed78d7362eac568e3d062042cb0440e0638ea2846587a9b853e1243%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2712565951&rft_id=info:pmid/&rfr_iscdi=true |