Loading…

Utility-Based Joint Power Control and Resource Allocation Algorithm for Heterogeneous Cloud Radio Access Network (H-CRAN)

The high density of H-CRAN associated with frequent UE handover may degrade the throughput. The infrastructure equipment like RRHs and BBUs consumes more energy to reduce UE energy consumptions. In this paper, we propose a utility-based joint power control and resource allocation (UJPCRA) algorithm...

Full description

Saved in:
Bibliographic Details
Published in:Wireless communications and mobile computing 2022-08, Vol.2022, p.1-7
Main Authors: Shaheen, H., Bhuvaneswari, M. S., Balaganesh, N., Rani, B. Kezia, Paul, P. John, Deepajothi, S., Berhanu, Afework Aemro
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The high density of H-CRAN associated with frequent UE handover may degrade the throughput. The infrastructure equipment like RRHs and BBUs consumes more energy to reduce UE energy consumptions. In this paper, we propose a utility-based joint power control and resource allocation (UJPCRA) algorithm for heterogeneous cloud radio access network (H-CRAN). In this framework, the power consumption of baseband units (BBUs), remote radio heads (RRHs), and macrocell base station (MBS) are estimated by predicting their dynamic loads. The data rate achievable for UE associated with each RRH and MBS on resource block RBk is then estimated. The user wishing to connect to a RRH or MBS then checks the corresponding utility with minimum expected energy consumption and the maximum expected data rate. If any UE with high priority traffic connected to MBS could not achieve its desired data rate requirements, then it can cooperatively seek the assistance of any RRH for assigning the balance RBs. The throughput may be enhanced by the high density of H-CRAN and frequent UE handover. Inter- and intracell interference causes the H-CRAN macrocells’ improved data rate to diminish. To lower UE energy consumption, infrastructure devices like RRHs and BBUs need more energy. As a result, there is a trade-off between operators and UE energy conservation. It is possible to determine the power consumption of BBUs, RRHs, and MBS using predictions of their dynamic loads. The UE may then forecast the data rate for each RRH and MBS on the resource block. When a user wishes to connect to an RRH or MBS, they look at the utility with the highest expected data rate and the least predicted energy usage first. A UE with high priority traffic connected to the MBS can cooperatively ask any RRH for assistance in allocating the remaining RBs if it is unable to achieve its intended data rate needs. Experimental results have shown that the proposed JRAUA algorithm achieves higher throughput, resource utilization, and energy efficiency with reduced packet loss ratio, when compared to the existing techniques.
ISSN:1530-8669
1530-8677
DOI:10.1155/2022/8594449