Loading…
Optimal Allocation of Human Resources Recommendation Based on Improved Particle Swarm Optimization Algorithm
People are the most dynamic factor of productivity, and human resource allocation is both the starting point and the end point of human resource management. In modern enterprises, human resource optimization is the scientific and rational allocation of human resources within the enterprise through c...
Saved in:
Published in: | Mathematical problems in engineering 2022-08, Vol.2022, p.1-13 |
---|---|
Main Author: | |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c337t-dc1c93028242af2fcc79e8e5b319e7779fe1db1377115277fcb236ddeae21e263 |
---|---|
cites | cdi_FETCH-LOGICAL-c337t-dc1c93028242af2fcc79e8e5b319e7779fe1db1377115277fcb236ddeae21e263 |
container_end_page | 13 |
container_issue | |
container_start_page | 1 |
container_title | Mathematical problems in engineering |
container_volume | 2022 |
creator | Wei, Jintong |
description | People are the most dynamic factor of productivity, and human resource allocation is both the starting point and the end point of human resource management. In modern enterprises, human resource optimization is the scientific and rational allocation of human resources within the enterprise through certain means and methods. The basic concept of particle swarm optimization (PSO) originates from the study of bird predation. It is an evolutionary computation technique based on the swarm intelligence method, which is similar to genetic algorithms and is a population-based optimization tool. This paper is inspired by the ant colony algorithm and introduces the ant colony pheromone and variation algorithm model into the PSO algorithm for further optimization. The application of this improved particle swarm optimization algorithm to the optimal allocation of human resources recommendations is demonstrated by a real case study. |
doi_str_mv | 10.1155/2022/2010685 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2712661939</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2712661939</sourcerecordid><originalsourceid>FETCH-LOGICAL-c337t-dc1c93028242af2fcc79e8e5b319e7779fe1db1377115277fcb236ddeae21e263</originalsourceid><addsrcrecordid>eNp9kMtOwzAQRS0EEqWw4wMisYSAZ1zHybJUQJEqFfGQ2EWuM6GpkrjYKRV8PS7pms3MXRzN4zB2DvwaQMob5IihAE9SecAGIBMRSxipw5A5jmJA8X7MTrxfcY4gIR2wer7uqkbX0biurdFdZdvIltF00-g2eiZvN86QD8nYpqG26Ilb7amIQnhs1s5-hfykXVeZmqKXrXZN9De1-unpcf1hXdUtm1N2VOra09m-D9nb_d3rZBrP5g-Pk_EsNkKoLi4MmExwTHGEusTSGJVRSnIhICOlVFYSFAsQSoWvUanSLFAkRUGaEAgTMWQX_dxw3OeGfJevwh9tWJmjAkwSyEQWqKueMs5676jM1y6ocN858HznM9_5zPc-A37Z48sqaNhW_9O_2CR12Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2712661939</pqid></control><display><type>article</type><title>Optimal Allocation of Human Resources Recommendation Based on Improved Particle Swarm Optimization Algorithm</title><source>Wiley-Blackwell Open Access Collection</source><source>Publicly Available Content Database</source><creator>Wei, Jintong</creator><contributor>Li, Lianhui ; Lianhui Li</contributor><creatorcontrib>Wei, Jintong ; Li, Lianhui ; Lianhui Li</creatorcontrib><description>People are the most dynamic factor of productivity, and human resource allocation is both the starting point and the end point of human resource management. In modern enterprises, human resource optimization is the scientific and rational allocation of human resources within the enterprise through certain means and methods. The basic concept of particle swarm optimization (PSO) originates from the study of bird predation. It is an evolutionary computation technique based on the swarm intelligence method, which is similar to genetic algorithms and is a population-based optimization tool. This paper is inspired by the ant colony algorithm and introduces the ant colony pheromone and variation algorithm model into the PSO algorithm for further optimization. The application of this improved particle swarm optimization algorithm to the optimal allocation of human resources recommendations is demonstrated by a real case study.</description><identifier>ISSN: 1024-123X</identifier><identifier>EISSN: 1563-5147</identifier><identifier>DOI: 10.1155/2022/2010685</identifier><language>eng</language><publisher>New York: Hindawi</publisher><subject>Ant colony optimization ; Efficiency ; Employees ; Employment ; Evolutionary computation ; Genetic algorithms ; Human resource management ; Optimization ; Particle swarm optimization ; Resource allocation ; Swarm intelligence</subject><ispartof>Mathematical problems in engineering, 2022-08, Vol.2022, p.1-13</ispartof><rights>Copyright © 2022 Jintong Wei.</rights><rights>Copyright © 2022 Jintong Wei. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. https://creativecommons.org/licenses/by/4.0</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c337t-dc1c93028242af2fcc79e8e5b319e7779fe1db1377115277fcb236ddeae21e263</citedby><cites>FETCH-LOGICAL-c337t-dc1c93028242af2fcc79e8e5b319e7779fe1db1377115277fcb236ddeae21e263</cites><orcidid>0000-0003-3349-2040</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2712661939/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2712661939?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,25731,27901,27902,36989,44566,74869</link.rule.ids></links><search><contributor>Li, Lianhui</contributor><contributor>Lianhui Li</contributor><creatorcontrib>Wei, Jintong</creatorcontrib><title>Optimal Allocation of Human Resources Recommendation Based on Improved Particle Swarm Optimization Algorithm</title><title>Mathematical problems in engineering</title><description>People are the most dynamic factor of productivity, and human resource allocation is both the starting point and the end point of human resource management. In modern enterprises, human resource optimization is the scientific and rational allocation of human resources within the enterprise through certain means and methods. The basic concept of particle swarm optimization (PSO) originates from the study of bird predation. It is an evolutionary computation technique based on the swarm intelligence method, which is similar to genetic algorithms and is a population-based optimization tool. This paper is inspired by the ant colony algorithm and introduces the ant colony pheromone and variation algorithm model into the PSO algorithm for further optimization. The application of this improved particle swarm optimization algorithm to the optimal allocation of human resources recommendations is demonstrated by a real case study.</description><subject>Ant colony optimization</subject><subject>Efficiency</subject><subject>Employees</subject><subject>Employment</subject><subject>Evolutionary computation</subject><subject>Genetic algorithms</subject><subject>Human resource management</subject><subject>Optimization</subject><subject>Particle swarm optimization</subject><subject>Resource allocation</subject><subject>Swarm intelligence</subject><issn>1024-123X</issn><issn>1563-5147</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNp9kMtOwzAQRS0EEqWw4wMisYSAZ1zHybJUQJEqFfGQ2EWuM6GpkrjYKRV8PS7pms3MXRzN4zB2DvwaQMob5IihAE9SecAGIBMRSxipw5A5jmJA8X7MTrxfcY4gIR2wer7uqkbX0biurdFdZdvIltF00-g2eiZvN86QD8nYpqG26Ilb7amIQnhs1s5-hfykXVeZmqKXrXZN9De1-unpcf1hXdUtm1N2VOra09m-D9nb_d3rZBrP5g-Pk_EsNkKoLi4MmExwTHGEusTSGJVRSnIhICOlVFYSFAsQSoWvUanSLFAkRUGaEAgTMWQX_dxw3OeGfJevwh9tWJmjAkwSyEQWqKueMs5676jM1y6ocN858HznM9_5zPc-A37Z48sqaNhW_9O_2CR12Q</recordid><startdate>20220829</startdate><enddate>20220829</enddate><creator>Wei, Jintong</creator><general>Hindawi</general><general>Hindawi Limited</general><scope>RHU</scope><scope>RHW</scope><scope>RHX</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>CWDGH</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>KR7</scope><scope>L6V</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><orcidid>https://orcid.org/0000-0003-3349-2040</orcidid></search><sort><creationdate>20220829</creationdate><title>Optimal Allocation of Human Resources Recommendation Based on Improved Particle Swarm Optimization Algorithm</title><author>Wei, Jintong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c337t-dc1c93028242af2fcc79e8e5b319e7779fe1db1377115277fcb236ddeae21e263</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Ant colony optimization</topic><topic>Efficiency</topic><topic>Employees</topic><topic>Employment</topic><topic>Evolutionary computation</topic><topic>Genetic algorithms</topic><topic>Human resource management</topic><topic>Optimization</topic><topic>Particle swarm optimization</topic><topic>Resource allocation</topic><topic>Swarm intelligence</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wei, Jintong</creatorcontrib><collection>Hindawi Publishing Complete</collection><collection>Hindawi Publishing Subscription Journals</collection><collection>Hindawi Publishing Open Access Journals</collection><collection>CrossRef</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Database (1962 - current)</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>Middle East & Africa Database</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>ProQuest advanced technologies & aerospace journals</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection><jtitle>Mathematical problems in engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wei, Jintong</au><au>Li, Lianhui</au><au>Lianhui Li</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Optimal Allocation of Human Resources Recommendation Based on Improved Particle Swarm Optimization Algorithm</atitle><jtitle>Mathematical problems in engineering</jtitle><date>2022-08-29</date><risdate>2022</risdate><volume>2022</volume><spage>1</spage><epage>13</epage><pages>1-13</pages><issn>1024-123X</issn><eissn>1563-5147</eissn><abstract>People are the most dynamic factor of productivity, and human resource allocation is both the starting point and the end point of human resource management. In modern enterprises, human resource optimization is the scientific and rational allocation of human resources within the enterprise through certain means and methods. The basic concept of particle swarm optimization (PSO) originates from the study of bird predation. It is an evolutionary computation technique based on the swarm intelligence method, which is similar to genetic algorithms and is a population-based optimization tool. This paper is inspired by the ant colony algorithm and introduces the ant colony pheromone and variation algorithm model into the PSO algorithm for further optimization. The application of this improved particle swarm optimization algorithm to the optimal allocation of human resources recommendations is demonstrated by a real case study.</abstract><cop>New York</cop><pub>Hindawi</pub><doi>10.1155/2022/2010685</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0003-3349-2040</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1024-123X |
ispartof | Mathematical problems in engineering, 2022-08, Vol.2022, p.1-13 |
issn | 1024-123X 1563-5147 |
language | eng |
recordid | cdi_proquest_journals_2712661939 |
source | Wiley-Blackwell Open Access Collection; Publicly Available Content Database |
subjects | Ant colony optimization Efficiency Employees Employment Evolutionary computation Genetic algorithms Human resource management Optimization Particle swarm optimization Resource allocation Swarm intelligence |
title | Optimal Allocation of Human Resources Recommendation Based on Improved Particle Swarm Optimization Algorithm |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T09%3A39%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Optimal%20Allocation%20of%20Human%20Resources%20Recommendation%20Based%20on%20Improved%20Particle%20Swarm%20Optimization%20Algorithm&rft.jtitle=Mathematical%20problems%20in%20engineering&rft.au=Wei,%20Jintong&rft.date=2022-08-29&rft.volume=2022&rft.spage=1&rft.epage=13&rft.pages=1-13&rft.issn=1024-123X&rft.eissn=1563-5147&rft_id=info:doi/10.1155/2022/2010685&rft_dat=%3Cproquest_cross%3E2712661939%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c337t-dc1c93028242af2fcc79e8e5b319e7779fe1db1377115277fcb236ddeae21e263%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2712661939&rft_id=info:pmid/&rfr_iscdi=true |