Loading…

Optimal Allocation of Human Resources Recommendation Based on Improved Particle Swarm Optimization Algorithm

People are the most dynamic factor of productivity, and human resource allocation is both the starting point and the end point of human resource management. In modern enterprises, human resource optimization is the scientific and rational allocation of human resources within the enterprise through c...

Full description

Saved in:
Bibliographic Details
Published in:Mathematical problems in engineering 2022-08, Vol.2022, p.1-13
Main Author: Wei, Jintong
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c337t-dc1c93028242af2fcc79e8e5b319e7779fe1db1377115277fcb236ddeae21e263
cites cdi_FETCH-LOGICAL-c337t-dc1c93028242af2fcc79e8e5b319e7779fe1db1377115277fcb236ddeae21e263
container_end_page 13
container_issue
container_start_page 1
container_title Mathematical problems in engineering
container_volume 2022
creator Wei, Jintong
description People are the most dynamic factor of productivity, and human resource allocation is both the starting point and the end point of human resource management. In modern enterprises, human resource optimization is the scientific and rational allocation of human resources within the enterprise through certain means and methods. The basic concept of particle swarm optimization (PSO) originates from the study of bird predation. It is an evolutionary computation technique based on the swarm intelligence method, which is similar to genetic algorithms and is a population-based optimization tool. This paper is inspired by the ant colony algorithm and introduces the ant colony pheromone and variation algorithm model into the PSO algorithm for further optimization. The application of this improved particle swarm optimization algorithm to the optimal allocation of human resources recommendations is demonstrated by a real case study.
doi_str_mv 10.1155/2022/2010685
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2712661939</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2712661939</sourcerecordid><originalsourceid>FETCH-LOGICAL-c337t-dc1c93028242af2fcc79e8e5b319e7779fe1db1377115277fcb236ddeae21e263</originalsourceid><addsrcrecordid>eNp9kMtOwzAQRS0EEqWw4wMisYSAZ1zHybJUQJEqFfGQ2EWuM6GpkrjYKRV8PS7pms3MXRzN4zB2DvwaQMob5IihAE9SecAGIBMRSxipw5A5jmJA8X7MTrxfcY4gIR2wer7uqkbX0biurdFdZdvIltF00-g2eiZvN86QD8nYpqG26Ilb7amIQnhs1s5-hfykXVeZmqKXrXZN9De1-unpcf1hXdUtm1N2VOra09m-D9nb_d3rZBrP5g-Pk_EsNkKoLi4MmExwTHGEusTSGJVRSnIhICOlVFYSFAsQSoWvUanSLFAkRUGaEAgTMWQX_dxw3OeGfJevwh9tWJmjAkwSyEQWqKueMs5676jM1y6ocN858HznM9_5zPc-A37Z48sqaNhW_9O_2CR12Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2712661939</pqid></control><display><type>article</type><title>Optimal Allocation of Human Resources Recommendation Based on Improved Particle Swarm Optimization Algorithm</title><source>Wiley-Blackwell Open Access Collection</source><source>Publicly Available Content Database</source><creator>Wei, Jintong</creator><contributor>Li, Lianhui ; Lianhui Li</contributor><creatorcontrib>Wei, Jintong ; Li, Lianhui ; Lianhui Li</creatorcontrib><description>People are the most dynamic factor of productivity, and human resource allocation is both the starting point and the end point of human resource management. In modern enterprises, human resource optimization is the scientific and rational allocation of human resources within the enterprise through certain means and methods. The basic concept of particle swarm optimization (PSO) originates from the study of bird predation. It is an evolutionary computation technique based on the swarm intelligence method, which is similar to genetic algorithms and is a population-based optimization tool. This paper is inspired by the ant colony algorithm and introduces the ant colony pheromone and variation algorithm model into the PSO algorithm for further optimization. The application of this improved particle swarm optimization algorithm to the optimal allocation of human resources recommendations is demonstrated by a real case study.</description><identifier>ISSN: 1024-123X</identifier><identifier>EISSN: 1563-5147</identifier><identifier>DOI: 10.1155/2022/2010685</identifier><language>eng</language><publisher>New York: Hindawi</publisher><subject>Ant colony optimization ; Efficiency ; Employees ; Employment ; Evolutionary computation ; Genetic algorithms ; Human resource management ; Optimization ; Particle swarm optimization ; Resource allocation ; Swarm intelligence</subject><ispartof>Mathematical problems in engineering, 2022-08, Vol.2022, p.1-13</ispartof><rights>Copyright © 2022 Jintong Wei.</rights><rights>Copyright © 2022 Jintong Wei. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. https://creativecommons.org/licenses/by/4.0</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c337t-dc1c93028242af2fcc79e8e5b319e7779fe1db1377115277fcb236ddeae21e263</citedby><cites>FETCH-LOGICAL-c337t-dc1c93028242af2fcc79e8e5b319e7779fe1db1377115277fcb236ddeae21e263</cites><orcidid>0000-0003-3349-2040</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2712661939/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2712661939?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,25731,27901,27902,36989,44566,74869</link.rule.ids></links><search><contributor>Li, Lianhui</contributor><contributor>Lianhui Li</contributor><creatorcontrib>Wei, Jintong</creatorcontrib><title>Optimal Allocation of Human Resources Recommendation Based on Improved Particle Swarm Optimization Algorithm</title><title>Mathematical problems in engineering</title><description>People are the most dynamic factor of productivity, and human resource allocation is both the starting point and the end point of human resource management. In modern enterprises, human resource optimization is the scientific and rational allocation of human resources within the enterprise through certain means and methods. The basic concept of particle swarm optimization (PSO) originates from the study of bird predation. It is an evolutionary computation technique based on the swarm intelligence method, which is similar to genetic algorithms and is a population-based optimization tool. This paper is inspired by the ant colony algorithm and introduces the ant colony pheromone and variation algorithm model into the PSO algorithm for further optimization. The application of this improved particle swarm optimization algorithm to the optimal allocation of human resources recommendations is demonstrated by a real case study.</description><subject>Ant colony optimization</subject><subject>Efficiency</subject><subject>Employees</subject><subject>Employment</subject><subject>Evolutionary computation</subject><subject>Genetic algorithms</subject><subject>Human resource management</subject><subject>Optimization</subject><subject>Particle swarm optimization</subject><subject>Resource allocation</subject><subject>Swarm intelligence</subject><issn>1024-123X</issn><issn>1563-5147</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNp9kMtOwzAQRS0EEqWw4wMisYSAZ1zHybJUQJEqFfGQ2EWuM6GpkrjYKRV8PS7pms3MXRzN4zB2DvwaQMob5IihAE9SecAGIBMRSxipw5A5jmJA8X7MTrxfcY4gIR2wer7uqkbX0biurdFdZdvIltF00-g2eiZvN86QD8nYpqG26Ilb7amIQnhs1s5-hfykXVeZmqKXrXZN9De1-unpcf1hXdUtm1N2VOra09m-D9nb_d3rZBrP5g-Pk_EsNkKoLi4MmExwTHGEusTSGJVRSnIhICOlVFYSFAsQSoWvUanSLFAkRUGaEAgTMWQX_dxw3OeGfJevwh9tWJmjAkwSyEQWqKueMs5676jM1y6ocN858HznM9_5zPc-A37Z48sqaNhW_9O_2CR12Q</recordid><startdate>20220829</startdate><enddate>20220829</enddate><creator>Wei, Jintong</creator><general>Hindawi</general><general>Hindawi Limited</general><scope>RHU</scope><scope>RHW</scope><scope>RHX</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>CWDGH</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>KR7</scope><scope>L6V</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><orcidid>https://orcid.org/0000-0003-3349-2040</orcidid></search><sort><creationdate>20220829</creationdate><title>Optimal Allocation of Human Resources Recommendation Based on Improved Particle Swarm Optimization Algorithm</title><author>Wei, Jintong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c337t-dc1c93028242af2fcc79e8e5b319e7779fe1db1377115277fcb236ddeae21e263</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Ant colony optimization</topic><topic>Efficiency</topic><topic>Employees</topic><topic>Employment</topic><topic>Evolutionary computation</topic><topic>Genetic algorithms</topic><topic>Human resource management</topic><topic>Optimization</topic><topic>Particle swarm optimization</topic><topic>Resource allocation</topic><topic>Swarm intelligence</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wei, Jintong</creatorcontrib><collection>Hindawi Publishing Complete</collection><collection>Hindawi Publishing Subscription Journals</collection><collection>Hindawi Publishing Open Access Journals</collection><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Database‎ (1962 - current)</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>Middle East &amp; Africa Database</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>ProQuest advanced technologies &amp; aerospace journals</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection><jtitle>Mathematical problems in engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wei, Jintong</au><au>Li, Lianhui</au><au>Lianhui Li</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Optimal Allocation of Human Resources Recommendation Based on Improved Particle Swarm Optimization Algorithm</atitle><jtitle>Mathematical problems in engineering</jtitle><date>2022-08-29</date><risdate>2022</risdate><volume>2022</volume><spage>1</spage><epage>13</epage><pages>1-13</pages><issn>1024-123X</issn><eissn>1563-5147</eissn><abstract>People are the most dynamic factor of productivity, and human resource allocation is both the starting point and the end point of human resource management. In modern enterprises, human resource optimization is the scientific and rational allocation of human resources within the enterprise through certain means and methods. The basic concept of particle swarm optimization (PSO) originates from the study of bird predation. It is an evolutionary computation technique based on the swarm intelligence method, which is similar to genetic algorithms and is a population-based optimization tool. This paper is inspired by the ant colony algorithm and introduces the ant colony pheromone and variation algorithm model into the PSO algorithm for further optimization. The application of this improved particle swarm optimization algorithm to the optimal allocation of human resources recommendations is demonstrated by a real case study.</abstract><cop>New York</cop><pub>Hindawi</pub><doi>10.1155/2022/2010685</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0003-3349-2040</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1024-123X
ispartof Mathematical problems in engineering, 2022-08, Vol.2022, p.1-13
issn 1024-123X
1563-5147
language eng
recordid cdi_proquest_journals_2712661939
source Wiley-Blackwell Open Access Collection; Publicly Available Content Database
subjects Ant colony optimization
Efficiency
Employees
Employment
Evolutionary computation
Genetic algorithms
Human resource management
Optimization
Particle swarm optimization
Resource allocation
Swarm intelligence
title Optimal Allocation of Human Resources Recommendation Based on Improved Particle Swarm Optimization Algorithm
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T09%3A39%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Optimal%20Allocation%20of%20Human%20Resources%20Recommendation%20Based%20on%20Improved%20Particle%20Swarm%20Optimization%20Algorithm&rft.jtitle=Mathematical%20problems%20in%20engineering&rft.au=Wei,%20Jintong&rft.date=2022-08-29&rft.volume=2022&rft.spage=1&rft.epage=13&rft.pages=1-13&rft.issn=1024-123X&rft.eissn=1563-5147&rft_id=info:doi/10.1155/2022/2010685&rft_dat=%3Cproquest_cross%3E2712661939%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c337t-dc1c93028242af2fcc79e8e5b319e7779fe1db1377115277fcb236ddeae21e263%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2712661939&rft_id=info:pmid/&rfr_iscdi=true