Loading…
Recovery and isolation of individual microfluidic picoliter droplets by triggered deposition
Microfluidic emulsion-based droplet systems have a great potential for inexpensive ultrahigh-throughput experimentation. Yet, picking and upscaling single unique picoliter-sized droplets of interest out of million others for deeper analysis is still a fundamental limitation. In order to overcome thi...
Saved in:
Published in: | Sensors and actuators. B, Chemical Chemical, 2022-10, Vol.369, p.132289, Article 132289 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Microfluidic emulsion-based droplet systems have a great potential for inexpensive ultrahigh-throughput experimentation. Yet, picking and upscaling single unique picoliter-sized droplets of interest out of million others for deeper analysis is still a fundamental limitation. In order to overcome this missing gap, we present a system in which droplets of interest are collected into a collection chamber (DropLot) in high throughput and then slowly redirected to an agar surface or microtiter plate via a capillary tube passing through an optical sensor before exiting. The signal of each droplet triggers a positioning algorithm that ultimately places the flowing droplet at a defined position on a Petri dish or microtiter plate. Results indicate effective isolation of single droplets giving rise to colonies on agar surface with a recovery rate of over 93%. The possibility to isolate individual droplets provides a critical feature for interfacing droplet microfluidics with standard laboratory analysis and processing. |
---|---|
ISSN: | 0925-4005 1873-3077 |
DOI: | 10.1016/j.snb.2022.132289 |