Loading…

Assessment of the Effects of Copper Oxide Nanoparticles Addition to Solar Salt: Implications for Thermal Energy Storage

The incorporation of conductive nanoparticles into thermal energy storage media is one of the strategies to increase their thermal conductivity. This work unravels the impact of the addition of CuO nanoparticles on the thermal properties of solar salt, a high-temperature thermal energy storage mater...

Full description

Saved in:
Bibliographic Details
Published in:International journal of thermophysics 2022-11, Vol.43 (11), Article 162
Main Authors: Saranprabhu, M. K., Suganthi, K. S., Rajan, K. S.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c319t-34065661385357f315faf82c5d49bde0dcebff7d773e636842da21e75bad9d63
cites cdi_FETCH-LOGICAL-c319t-34065661385357f315faf82c5d49bde0dcebff7d773e636842da21e75bad9d63
container_end_page
container_issue 11
container_start_page
container_title International journal of thermophysics
container_volume 43
creator Saranprabhu, M. K.
Suganthi, K. S.
Rajan, K. S.
description The incorporation of conductive nanoparticles into thermal energy storage media is one of the strategies to increase their thermal conductivity. This work unravels the impact of the addition of CuO nanoparticles on the thermal properties of solar salt, a high-temperature thermal energy storage material. The resultant CuO enhanced solar salt (CuOeSS) exhibited a maximum thermal conductivity improvement of 14.4 % at 40 °C when the concentration of CuO nanoparticles was 1 wt%. The prevalence of CuO nanoparticles as isolated aggregates resulted in a moderate thermal conductivity enhancement. The CuO nanoparticles greatly influenced α-KNO 3 to β-KNO 3 transition and reduced the expected positive influence on thermal conductivity at temperatures above 120 °C. The solid-phase specific heat was enhanced by 22.7 % for 2 wt% CuOeSS. Our results demonstrate the interplay between the different roles played by CuO nanoparticles, namely the thermal conductivity enhancement at lower temperatures and influencing the α-KNO 3 to β-KNO 3 transition at higher temperatures. The CuOeSS with 0.5 wt% CuO, which showed enhancement in both thermal conductivity and energy storage capacity, is a suitable energy storage material for applications in the temperature range of 100–245 °C.
doi_str_mv 10.1007/s10765-022-03085-y
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2713464478</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2713464478</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-34065661385357f315faf82c5d49bde0dcebff7d773e636842da21e75bad9d63</originalsourceid><addsrcrecordid>eNp9kE1LAzEQhoMoWKt_wFPA82o-Nsmut1KqFsQe2oO3kG4m7ZbtZk1SdP-9Wyt48zQM87zvwIPQLSX3lBD1EClRUmSEsYxwUoisP0MjKhTLSiHVORoRWoqsZMX7JbqKcUcIKVXJR-hzEiPEuIc2Ye9w2gKeOQdVisd16rsOAl581Rbwm2l9Z0KqqwYinlhbp9q3OHm89I0JeGma9Ijn-66pK3M8Rex8wKsthL1p8KyFsOnxMvlgNnCNLpxpItz8zjFaPc1W05fsdfE8n05es4rTMmU8J1JISXkhuFCOU-GMK1glbF6uLRBbwdo5ZZXiILkscmYNo6DE2tjSSj5Gd6faLviPA8Skd_4Q2uGjZoryXOa5KgaKnagq-BgDON2Fem9CrynRR7_65FcPfvWPX90PIX4KxQFuNxD-qv9JfQM8u3-h</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2713464478</pqid></control><display><type>article</type><title>Assessment of the Effects of Copper Oxide Nanoparticles Addition to Solar Salt: Implications for Thermal Energy Storage</title><source>Springer Nature</source><creator>Saranprabhu, M. K. ; Suganthi, K. S. ; Rajan, K. S.</creator><creatorcontrib>Saranprabhu, M. K. ; Suganthi, K. S. ; Rajan, K. S.</creatorcontrib><description>The incorporation of conductive nanoparticles into thermal energy storage media is one of the strategies to increase their thermal conductivity. This work unravels the impact of the addition of CuO nanoparticles on the thermal properties of solar salt, a high-temperature thermal energy storage material. The resultant CuO enhanced solar salt (CuOeSS) exhibited a maximum thermal conductivity improvement of 14.4 % at 40 °C when the concentration of CuO nanoparticles was 1 wt%. The prevalence of CuO nanoparticles as isolated aggregates resulted in a moderate thermal conductivity enhancement. The CuO nanoparticles greatly influenced α-KNO 3 to β-KNO 3 transition and reduced the expected positive influence on thermal conductivity at temperatures above 120 °C. The solid-phase specific heat was enhanced by 22.7 % for 2 wt% CuOeSS. Our results demonstrate the interplay between the different roles played by CuO nanoparticles, namely the thermal conductivity enhancement at lower temperatures and influencing the α-KNO 3 to β-KNO 3 transition at higher temperatures. The CuOeSS with 0.5 wt% CuO, which showed enhancement in both thermal conductivity and energy storage capacity, is a suitable energy storage material for applications in the temperature range of 100–245 °C.</description><identifier>ISSN: 0195-928X</identifier><identifier>EISSN: 1572-9567</identifier><identifier>DOI: 10.1007/s10765-022-03085-y</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Classical Mechanics ; Condensed Matter Physics ; Copper oxides ; Energy storage ; Geophysics ; Heat conductivity ; Heat transfer ; High temperature ; Industrial Chemistry/Chemical Engineering ; Nanoparticles ; Physical Chemistry ; Physics ; Physics and Astronomy ; Solid phases ; Storage capacity ; Thermal conductivity ; Thermal energy ; Thermodynamic properties ; Thermodynamics</subject><ispartof>International journal of thermophysics, 2022-11, Vol.43 (11), Article 162</ispartof><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022. Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-34065661385357f315faf82c5d49bde0dcebff7d773e636842da21e75bad9d63</citedby><cites>FETCH-LOGICAL-c319t-34065661385357f315faf82c5d49bde0dcebff7d773e636842da21e75bad9d63</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Saranprabhu, M. K.</creatorcontrib><creatorcontrib>Suganthi, K. S.</creatorcontrib><creatorcontrib>Rajan, K. S.</creatorcontrib><title>Assessment of the Effects of Copper Oxide Nanoparticles Addition to Solar Salt: Implications for Thermal Energy Storage</title><title>International journal of thermophysics</title><addtitle>Int J Thermophys</addtitle><description>The incorporation of conductive nanoparticles into thermal energy storage media is one of the strategies to increase their thermal conductivity. This work unravels the impact of the addition of CuO nanoparticles on the thermal properties of solar salt, a high-temperature thermal energy storage material. The resultant CuO enhanced solar salt (CuOeSS) exhibited a maximum thermal conductivity improvement of 14.4 % at 40 °C when the concentration of CuO nanoparticles was 1 wt%. The prevalence of CuO nanoparticles as isolated aggregates resulted in a moderate thermal conductivity enhancement. The CuO nanoparticles greatly influenced α-KNO 3 to β-KNO 3 transition and reduced the expected positive influence on thermal conductivity at temperatures above 120 °C. The solid-phase specific heat was enhanced by 22.7 % for 2 wt% CuOeSS. Our results demonstrate the interplay between the different roles played by CuO nanoparticles, namely the thermal conductivity enhancement at lower temperatures and influencing the α-KNO 3 to β-KNO 3 transition at higher temperatures. The CuOeSS with 0.5 wt% CuO, which showed enhancement in both thermal conductivity and energy storage capacity, is a suitable energy storage material for applications in the temperature range of 100–245 °C.</description><subject>Classical Mechanics</subject><subject>Condensed Matter Physics</subject><subject>Copper oxides</subject><subject>Energy storage</subject><subject>Geophysics</subject><subject>Heat conductivity</subject><subject>Heat transfer</subject><subject>High temperature</subject><subject>Industrial Chemistry/Chemical Engineering</subject><subject>Nanoparticles</subject><subject>Physical Chemistry</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Solid phases</subject><subject>Storage capacity</subject><subject>Thermal conductivity</subject><subject>Thermal energy</subject><subject>Thermodynamic properties</subject><subject>Thermodynamics</subject><issn>0195-928X</issn><issn>1572-9567</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LAzEQhoMoWKt_wFPA82o-Nsmut1KqFsQe2oO3kG4m7ZbtZk1SdP-9Wyt48zQM87zvwIPQLSX3lBD1EClRUmSEsYxwUoisP0MjKhTLSiHVORoRWoqsZMX7JbqKcUcIKVXJR-hzEiPEuIc2Ye9w2gKeOQdVisd16rsOAl581Rbwm2l9Z0KqqwYinlhbp9q3OHm89I0JeGma9Ijn-66pK3M8Rex8wKsthL1p8KyFsOnxMvlgNnCNLpxpItz8zjFaPc1W05fsdfE8n05es4rTMmU8J1JISXkhuFCOU-GMK1glbF6uLRBbwdo5ZZXiILkscmYNo6DE2tjSSj5Gd6faLviPA8Skd_4Q2uGjZoryXOa5KgaKnagq-BgDON2Fem9CrynRR7_65FcPfvWPX90PIX4KxQFuNxD-qv9JfQM8u3-h</recordid><startdate>20221101</startdate><enddate>20221101</enddate><creator>Saranprabhu, M. K.</creator><creator>Suganthi, K. S.</creator><creator>Rajan, K. S.</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20221101</creationdate><title>Assessment of the Effects of Copper Oxide Nanoparticles Addition to Solar Salt: Implications for Thermal Energy Storage</title><author>Saranprabhu, M. K. ; Suganthi, K. S. ; Rajan, K. S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-34065661385357f315faf82c5d49bde0dcebff7d773e636842da21e75bad9d63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Classical Mechanics</topic><topic>Condensed Matter Physics</topic><topic>Copper oxides</topic><topic>Energy storage</topic><topic>Geophysics</topic><topic>Heat conductivity</topic><topic>Heat transfer</topic><topic>High temperature</topic><topic>Industrial Chemistry/Chemical Engineering</topic><topic>Nanoparticles</topic><topic>Physical Chemistry</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Solid phases</topic><topic>Storage capacity</topic><topic>Thermal conductivity</topic><topic>Thermal energy</topic><topic>Thermodynamic properties</topic><topic>Thermodynamics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Saranprabhu, M. K.</creatorcontrib><creatorcontrib>Suganthi, K. S.</creatorcontrib><creatorcontrib>Rajan, K. S.</creatorcontrib><collection>CrossRef</collection><jtitle>International journal of thermophysics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Saranprabhu, M. K.</au><au>Suganthi, K. S.</au><au>Rajan, K. S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Assessment of the Effects of Copper Oxide Nanoparticles Addition to Solar Salt: Implications for Thermal Energy Storage</atitle><jtitle>International journal of thermophysics</jtitle><stitle>Int J Thermophys</stitle><date>2022-11-01</date><risdate>2022</risdate><volume>43</volume><issue>11</issue><artnum>162</artnum><issn>0195-928X</issn><eissn>1572-9567</eissn><abstract>The incorporation of conductive nanoparticles into thermal energy storage media is one of the strategies to increase their thermal conductivity. This work unravels the impact of the addition of CuO nanoparticles on the thermal properties of solar salt, a high-temperature thermal energy storage material. The resultant CuO enhanced solar salt (CuOeSS) exhibited a maximum thermal conductivity improvement of 14.4 % at 40 °C when the concentration of CuO nanoparticles was 1 wt%. The prevalence of CuO nanoparticles as isolated aggregates resulted in a moderate thermal conductivity enhancement. The CuO nanoparticles greatly influenced α-KNO 3 to β-KNO 3 transition and reduced the expected positive influence on thermal conductivity at temperatures above 120 °C. The solid-phase specific heat was enhanced by 22.7 % for 2 wt% CuOeSS. Our results demonstrate the interplay between the different roles played by CuO nanoparticles, namely the thermal conductivity enhancement at lower temperatures and influencing the α-KNO 3 to β-KNO 3 transition at higher temperatures. The CuOeSS with 0.5 wt% CuO, which showed enhancement in both thermal conductivity and energy storage capacity, is a suitable energy storage material for applications in the temperature range of 100–245 °C.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10765-022-03085-y</doi></addata></record>
fulltext fulltext
identifier ISSN: 0195-928X
ispartof International journal of thermophysics, 2022-11, Vol.43 (11), Article 162
issn 0195-928X
1572-9567
language eng
recordid cdi_proquest_journals_2713464478
source Springer Nature
subjects Classical Mechanics
Condensed Matter Physics
Copper oxides
Energy storage
Geophysics
Heat conductivity
Heat transfer
High temperature
Industrial Chemistry/Chemical Engineering
Nanoparticles
Physical Chemistry
Physics
Physics and Astronomy
Solid phases
Storage capacity
Thermal conductivity
Thermal energy
Thermodynamic properties
Thermodynamics
title Assessment of the Effects of Copper Oxide Nanoparticles Addition to Solar Salt: Implications for Thermal Energy Storage
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T21%3A21%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Assessment%20of%20the%20Effects%20of%20Copper%20Oxide%20Nanoparticles%20Addition%20to%20Solar%20Salt:%20Implications%20for%20Thermal%20Energy%20Storage&rft.jtitle=International%20journal%20of%20thermophysics&rft.au=Saranprabhu,%20M.%20K.&rft.date=2022-11-01&rft.volume=43&rft.issue=11&rft.artnum=162&rft.issn=0195-928X&rft.eissn=1572-9567&rft_id=info:doi/10.1007/s10765-022-03085-y&rft_dat=%3Cproquest_cross%3E2713464478%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c319t-34065661385357f315faf82c5d49bde0dcebff7d773e636842da21e75bad9d63%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2713464478&rft_id=info:pmid/&rfr_iscdi=true