Loading…
Spectral decomposition of atomic structures in heterogeneous cryo-EM
We consider the problem of recovering the three-dimensional atomic structure of a flexible macromolecule from a heterogeneous cryo-EM dataset. The dataset contains noisy tomographic projections of the electrostatic potential of the macromolecule, taken from different viewing directions, and in the h...
Saved in:
Published in: | arXiv.org 2022-12 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | |
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Esteve-Yagüe, Carlos Diepeveen, Willem Öktem, Ozan Schönlieb, Carola-Bibiane |
description | We consider the problem of recovering the three-dimensional atomic structure of a flexible macromolecule from a heterogeneous cryo-EM dataset. The dataset contains noisy tomographic projections of the electrostatic potential of the macromolecule, taken from different viewing directions, and in the heterogeneous case, each image corresponds to a different conformation of the macromolecule. Under the assumption that the macromolecule can be modelled as a chain, or discrete curve (as it is for instance the case for a protein backbone with a single chain of amino-acids), we introduce a method to estimate the deformation of the atomic model with respect to a given conformation, which is assumed to be known a priori. Our method consists on estimating the torsion and bond angles of the atomic model in each conformation as a linear combination of the eigenfunctions of the Laplace operator in the manifold of conformations. These eigenfunctions can be approximated by means of a well-known technique in manifold learning, based on the construction of a graph Laplacian using the cryo-EM dataset. Finally, we test our approach with synthetic datasets, for which we recover the atomic model of two-dimensional and three-dimensional flexible structures from noisy tomographic projections. |
doi_str_mv | 10.48550/arxiv.2209.05546 |
format | article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2714195420</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2714195420</sourcerecordid><originalsourceid>FETCH-LOGICAL-a520-7c70e3513db1f65e3248a6f4dcd99e369974a5c1a419c986fdeec62b0cfc17793</originalsourceid><addsrcrecordid>eNotjctKAzEUQIMgWGo_wF3A9YzJzWuylFofUHFh9yW9c0entJMxyYj-vQW7OqtzDmM3UtS6MUbchfTTf9cAwtfCGG0v2AyUklWjAa7YIue9EAKsA2PUjD28j4QlhQNvCeNxjLkvfRx47Hgo8dgjzyVNWKZEmfcD_6RCKX7QQHHKHNNvrFav1-yyC4dMizPnbPO42iyfq_Xb08vyfl0FA6Jy6AQpI1W7k501pEA3wXa6xdZ7UtZ7p4NBGbT06BvbtURoYSewQ-mcV3N2-58dU_yaKJftPk5pOB234OTJMhqE-gNPH00B</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2714195420</pqid></control><display><type>article</type><title>Spectral decomposition of atomic structures in heterogeneous cryo-EM</title><source>Publicly Available Content Database</source><creator>Esteve-Yagüe, Carlos ; Diepeveen, Willem ; Öktem, Ozan ; Schönlieb, Carola-Bibiane</creator><creatorcontrib>Esteve-Yagüe, Carlos ; Diepeveen, Willem ; Öktem, Ozan ; Schönlieb, Carola-Bibiane</creatorcontrib><description>We consider the problem of recovering the three-dimensional atomic structure of a flexible macromolecule from a heterogeneous cryo-EM dataset. The dataset contains noisy tomographic projections of the electrostatic potential of the macromolecule, taken from different viewing directions, and in the heterogeneous case, each image corresponds to a different conformation of the macromolecule. Under the assumption that the macromolecule can be modelled as a chain, or discrete curve (as it is for instance the case for a protein backbone with a single chain of amino-acids), we introduce a method to estimate the deformation of the atomic model with respect to a given conformation, which is assumed to be known a priori. Our method consists on estimating the torsion and bond angles of the atomic model in each conformation as a linear combination of the eigenfunctions of the Laplace operator in the manifold of conformations. These eigenfunctions can be approximated by means of a well-known technique in manifold learning, based on the construction of a graph Laplacian using the cryo-EM dataset. Finally, we test our approach with synthetic datasets, for which we recover the atomic model of two-dimensional and three-dimensional flexible structures from noisy tomographic projections.</description><identifier>EISSN: 2331-8422</identifier><identifier>DOI: 10.48550/arxiv.2209.05546</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Amino acids ; Atomic structure ; Chains ; Chemical bonds ; Datasets ; Eigenvectors ; Electron microscopes ; Flexible structures ; Machine learning ; Manifolds (mathematics) ; Two dimensional models</subject><ispartof>arXiv.org, 2022-12</ispartof><rights>2022. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2714195420?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>776,780,25731,27902,36989,44566</link.rule.ids></links><search><creatorcontrib>Esteve-Yagüe, Carlos</creatorcontrib><creatorcontrib>Diepeveen, Willem</creatorcontrib><creatorcontrib>Öktem, Ozan</creatorcontrib><creatorcontrib>Schönlieb, Carola-Bibiane</creatorcontrib><title>Spectral decomposition of atomic structures in heterogeneous cryo-EM</title><title>arXiv.org</title><description>We consider the problem of recovering the three-dimensional atomic structure of a flexible macromolecule from a heterogeneous cryo-EM dataset. The dataset contains noisy tomographic projections of the electrostatic potential of the macromolecule, taken from different viewing directions, and in the heterogeneous case, each image corresponds to a different conformation of the macromolecule. Under the assumption that the macromolecule can be modelled as a chain, or discrete curve (as it is for instance the case for a protein backbone with a single chain of amino-acids), we introduce a method to estimate the deformation of the atomic model with respect to a given conformation, which is assumed to be known a priori. Our method consists on estimating the torsion and bond angles of the atomic model in each conformation as a linear combination of the eigenfunctions of the Laplace operator in the manifold of conformations. These eigenfunctions can be approximated by means of a well-known technique in manifold learning, based on the construction of a graph Laplacian using the cryo-EM dataset. Finally, we test our approach with synthetic datasets, for which we recover the atomic model of two-dimensional and three-dimensional flexible structures from noisy tomographic projections.</description><subject>Amino acids</subject><subject>Atomic structure</subject><subject>Chains</subject><subject>Chemical bonds</subject><subject>Datasets</subject><subject>Eigenvectors</subject><subject>Electron microscopes</subject><subject>Flexible structures</subject><subject>Machine learning</subject><subject>Manifolds (mathematics)</subject><subject>Two dimensional models</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNotjctKAzEUQIMgWGo_wF3A9YzJzWuylFofUHFh9yW9c0entJMxyYj-vQW7OqtzDmM3UtS6MUbchfTTf9cAwtfCGG0v2AyUklWjAa7YIue9EAKsA2PUjD28j4QlhQNvCeNxjLkvfRx47Hgo8dgjzyVNWKZEmfcD_6RCKX7QQHHKHNNvrFav1-yyC4dMizPnbPO42iyfq_Xb08vyfl0FA6Jy6AQpI1W7k501pEA3wXa6xdZ7UtZ7p4NBGbT06BvbtURoYSewQ-mcV3N2-58dU_yaKJftPk5pOB234OTJMhqE-gNPH00B</recordid><startdate>20221227</startdate><enddate>20221227</enddate><creator>Esteve-Yagüe, Carlos</creator><creator>Diepeveen, Willem</creator><creator>Öktem, Ozan</creator><creator>Schönlieb, Carola-Bibiane</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20221227</creationdate><title>Spectral decomposition of atomic structures in heterogeneous cryo-EM</title><author>Esteve-Yagüe, Carlos ; Diepeveen, Willem ; Öktem, Ozan ; Schönlieb, Carola-Bibiane</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a520-7c70e3513db1f65e3248a6f4dcd99e369974a5c1a419c986fdeec62b0cfc17793</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Amino acids</topic><topic>Atomic structure</topic><topic>Chains</topic><topic>Chemical bonds</topic><topic>Datasets</topic><topic>Eigenvectors</topic><topic>Electron microscopes</topic><topic>Flexible structures</topic><topic>Machine learning</topic><topic>Manifolds (mathematics)</topic><topic>Two dimensional models</topic><toplevel>online_resources</toplevel><creatorcontrib>Esteve-Yagüe, Carlos</creatorcontrib><creatorcontrib>Diepeveen, Willem</creatorcontrib><creatorcontrib>Öktem, Ozan</creatorcontrib><creatorcontrib>Schönlieb, Carola-Bibiane</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection><jtitle>arXiv.org</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Esteve-Yagüe, Carlos</au><au>Diepeveen, Willem</au><au>Öktem, Ozan</au><au>Schönlieb, Carola-Bibiane</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Spectral decomposition of atomic structures in heterogeneous cryo-EM</atitle><jtitle>arXiv.org</jtitle><date>2022-12-27</date><risdate>2022</risdate><eissn>2331-8422</eissn><abstract>We consider the problem of recovering the three-dimensional atomic structure of a flexible macromolecule from a heterogeneous cryo-EM dataset. The dataset contains noisy tomographic projections of the electrostatic potential of the macromolecule, taken from different viewing directions, and in the heterogeneous case, each image corresponds to a different conformation of the macromolecule. Under the assumption that the macromolecule can be modelled as a chain, or discrete curve (as it is for instance the case for a protein backbone with a single chain of amino-acids), we introduce a method to estimate the deformation of the atomic model with respect to a given conformation, which is assumed to be known a priori. Our method consists on estimating the torsion and bond angles of the atomic model in each conformation as a linear combination of the eigenfunctions of the Laplace operator in the manifold of conformations. These eigenfunctions can be approximated by means of a well-known technique in manifold learning, based on the construction of a graph Laplacian using the cryo-EM dataset. Finally, we test our approach with synthetic datasets, for which we recover the atomic model of two-dimensional and three-dimensional flexible structures from noisy tomographic projections.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><doi>10.48550/arxiv.2209.05546</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2022-12 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2714195420 |
source | Publicly Available Content Database |
subjects | Amino acids Atomic structure Chains Chemical bonds Datasets Eigenvectors Electron microscopes Flexible structures Machine learning Manifolds (mathematics) Two dimensional models |
title | Spectral decomposition of atomic structures in heterogeneous cryo-EM |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T15%3A44%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Spectral%20decomposition%20of%20atomic%20structures%20in%20heterogeneous%20cryo-EM&rft.jtitle=arXiv.org&rft.au=Esteve-Yag%C3%BCe,%20Carlos&rft.date=2022-12-27&rft.eissn=2331-8422&rft_id=info:doi/10.48550/arxiv.2209.05546&rft_dat=%3Cproquest%3E2714195420%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a520-7c70e3513db1f65e3248a6f4dcd99e369974a5c1a419c986fdeec62b0cfc17793%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2714195420&rft_id=info:pmid/&rfr_iscdi=true |