Loading…

Spectral decomposition of atomic structures in heterogeneous cryo-EM

We consider the problem of recovering the three-dimensional atomic structure of a flexible macromolecule from a heterogeneous cryo-EM dataset. The dataset contains noisy tomographic projections of the electrostatic potential of the macromolecule, taken from different viewing directions, and in the h...

Full description

Saved in:
Bibliographic Details
Published in:arXiv.org 2022-12
Main Authors: Esteve-Yagüe, Carlos, Diepeveen, Willem, Öktem, Ozan, Schönlieb, Carola-Bibiane
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Esteve-Yagüe, Carlos
Diepeveen, Willem
Öktem, Ozan
Schönlieb, Carola-Bibiane
description We consider the problem of recovering the three-dimensional atomic structure of a flexible macromolecule from a heterogeneous cryo-EM dataset. The dataset contains noisy tomographic projections of the electrostatic potential of the macromolecule, taken from different viewing directions, and in the heterogeneous case, each image corresponds to a different conformation of the macromolecule. Under the assumption that the macromolecule can be modelled as a chain, or discrete curve (as it is for instance the case for a protein backbone with a single chain of amino-acids), we introduce a method to estimate the deformation of the atomic model with respect to a given conformation, which is assumed to be known a priori. Our method consists on estimating the torsion and bond angles of the atomic model in each conformation as a linear combination of the eigenfunctions of the Laplace operator in the manifold of conformations. These eigenfunctions can be approximated by means of a well-known technique in manifold learning, based on the construction of a graph Laplacian using the cryo-EM dataset. Finally, we test our approach with synthetic datasets, for which we recover the atomic model of two-dimensional and three-dimensional flexible structures from noisy tomographic projections.
doi_str_mv 10.48550/arxiv.2209.05546
format article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2714195420</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2714195420</sourcerecordid><originalsourceid>FETCH-LOGICAL-a520-7c70e3513db1f65e3248a6f4dcd99e369974a5c1a419c986fdeec62b0cfc17793</originalsourceid><addsrcrecordid>eNotjctKAzEUQIMgWGo_wF3A9YzJzWuylFofUHFh9yW9c0entJMxyYj-vQW7OqtzDmM3UtS6MUbchfTTf9cAwtfCGG0v2AyUklWjAa7YIue9EAKsA2PUjD28j4QlhQNvCeNxjLkvfRx47Hgo8dgjzyVNWKZEmfcD_6RCKX7QQHHKHNNvrFav1-yyC4dMizPnbPO42iyfq_Xb08vyfl0FA6Jy6AQpI1W7k501pEA3wXa6xdZ7UtZ7p4NBGbT06BvbtURoYSewQ-mcV3N2-58dU_yaKJftPk5pOB234OTJMhqE-gNPH00B</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2714195420</pqid></control><display><type>article</type><title>Spectral decomposition of atomic structures in heterogeneous cryo-EM</title><source>Publicly Available Content Database</source><creator>Esteve-Yagüe, Carlos ; Diepeveen, Willem ; Öktem, Ozan ; Schönlieb, Carola-Bibiane</creator><creatorcontrib>Esteve-Yagüe, Carlos ; Diepeveen, Willem ; Öktem, Ozan ; Schönlieb, Carola-Bibiane</creatorcontrib><description>We consider the problem of recovering the three-dimensional atomic structure of a flexible macromolecule from a heterogeneous cryo-EM dataset. The dataset contains noisy tomographic projections of the electrostatic potential of the macromolecule, taken from different viewing directions, and in the heterogeneous case, each image corresponds to a different conformation of the macromolecule. Under the assumption that the macromolecule can be modelled as a chain, or discrete curve (as it is for instance the case for a protein backbone with a single chain of amino-acids), we introduce a method to estimate the deformation of the atomic model with respect to a given conformation, which is assumed to be known a priori. Our method consists on estimating the torsion and bond angles of the atomic model in each conformation as a linear combination of the eigenfunctions of the Laplace operator in the manifold of conformations. These eigenfunctions can be approximated by means of a well-known technique in manifold learning, based on the construction of a graph Laplacian using the cryo-EM dataset. Finally, we test our approach with synthetic datasets, for which we recover the atomic model of two-dimensional and three-dimensional flexible structures from noisy tomographic projections.</description><identifier>EISSN: 2331-8422</identifier><identifier>DOI: 10.48550/arxiv.2209.05546</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Amino acids ; Atomic structure ; Chains ; Chemical bonds ; Datasets ; Eigenvectors ; Electron microscopes ; Flexible structures ; Machine learning ; Manifolds (mathematics) ; Two dimensional models</subject><ispartof>arXiv.org, 2022-12</ispartof><rights>2022. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2714195420?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>776,780,25731,27902,36989,44566</link.rule.ids></links><search><creatorcontrib>Esteve-Yagüe, Carlos</creatorcontrib><creatorcontrib>Diepeveen, Willem</creatorcontrib><creatorcontrib>Öktem, Ozan</creatorcontrib><creatorcontrib>Schönlieb, Carola-Bibiane</creatorcontrib><title>Spectral decomposition of atomic structures in heterogeneous cryo-EM</title><title>arXiv.org</title><description>We consider the problem of recovering the three-dimensional atomic structure of a flexible macromolecule from a heterogeneous cryo-EM dataset. The dataset contains noisy tomographic projections of the electrostatic potential of the macromolecule, taken from different viewing directions, and in the heterogeneous case, each image corresponds to a different conformation of the macromolecule. Under the assumption that the macromolecule can be modelled as a chain, or discrete curve (as it is for instance the case for a protein backbone with a single chain of amino-acids), we introduce a method to estimate the deformation of the atomic model with respect to a given conformation, which is assumed to be known a priori. Our method consists on estimating the torsion and bond angles of the atomic model in each conformation as a linear combination of the eigenfunctions of the Laplace operator in the manifold of conformations. These eigenfunctions can be approximated by means of a well-known technique in manifold learning, based on the construction of a graph Laplacian using the cryo-EM dataset. Finally, we test our approach with synthetic datasets, for which we recover the atomic model of two-dimensional and three-dimensional flexible structures from noisy tomographic projections.</description><subject>Amino acids</subject><subject>Atomic structure</subject><subject>Chains</subject><subject>Chemical bonds</subject><subject>Datasets</subject><subject>Eigenvectors</subject><subject>Electron microscopes</subject><subject>Flexible structures</subject><subject>Machine learning</subject><subject>Manifolds (mathematics)</subject><subject>Two dimensional models</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNotjctKAzEUQIMgWGo_wF3A9YzJzWuylFofUHFh9yW9c0entJMxyYj-vQW7OqtzDmM3UtS6MUbchfTTf9cAwtfCGG0v2AyUklWjAa7YIue9EAKsA2PUjD28j4QlhQNvCeNxjLkvfRx47Hgo8dgjzyVNWKZEmfcD_6RCKX7QQHHKHNNvrFav1-yyC4dMizPnbPO42iyfq_Xb08vyfl0FA6Jy6AQpI1W7k501pEA3wXa6xdZ7UtZ7p4NBGbT06BvbtURoYSewQ-mcV3N2-58dU_yaKJftPk5pOB234OTJMhqE-gNPH00B</recordid><startdate>20221227</startdate><enddate>20221227</enddate><creator>Esteve-Yagüe, Carlos</creator><creator>Diepeveen, Willem</creator><creator>Öktem, Ozan</creator><creator>Schönlieb, Carola-Bibiane</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20221227</creationdate><title>Spectral decomposition of atomic structures in heterogeneous cryo-EM</title><author>Esteve-Yagüe, Carlos ; Diepeveen, Willem ; Öktem, Ozan ; Schönlieb, Carola-Bibiane</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a520-7c70e3513db1f65e3248a6f4dcd99e369974a5c1a419c986fdeec62b0cfc17793</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Amino acids</topic><topic>Atomic structure</topic><topic>Chains</topic><topic>Chemical bonds</topic><topic>Datasets</topic><topic>Eigenvectors</topic><topic>Electron microscopes</topic><topic>Flexible structures</topic><topic>Machine learning</topic><topic>Manifolds (mathematics)</topic><topic>Two dimensional models</topic><toplevel>online_resources</toplevel><creatorcontrib>Esteve-Yagüe, Carlos</creatorcontrib><creatorcontrib>Diepeveen, Willem</creatorcontrib><creatorcontrib>Öktem, Ozan</creatorcontrib><creatorcontrib>Schönlieb, Carola-Bibiane</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection><jtitle>arXiv.org</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Esteve-Yagüe, Carlos</au><au>Diepeveen, Willem</au><au>Öktem, Ozan</au><au>Schönlieb, Carola-Bibiane</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Spectral decomposition of atomic structures in heterogeneous cryo-EM</atitle><jtitle>arXiv.org</jtitle><date>2022-12-27</date><risdate>2022</risdate><eissn>2331-8422</eissn><abstract>We consider the problem of recovering the three-dimensional atomic structure of a flexible macromolecule from a heterogeneous cryo-EM dataset. The dataset contains noisy tomographic projections of the electrostatic potential of the macromolecule, taken from different viewing directions, and in the heterogeneous case, each image corresponds to a different conformation of the macromolecule. Under the assumption that the macromolecule can be modelled as a chain, or discrete curve (as it is for instance the case for a protein backbone with a single chain of amino-acids), we introduce a method to estimate the deformation of the atomic model with respect to a given conformation, which is assumed to be known a priori. Our method consists on estimating the torsion and bond angles of the atomic model in each conformation as a linear combination of the eigenfunctions of the Laplace operator in the manifold of conformations. These eigenfunctions can be approximated by means of a well-known technique in manifold learning, based on the construction of a graph Laplacian using the cryo-EM dataset. Finally, we test our approach with synthetic datasets, for which we recover the atomic model of two-dimensional and three-dimensional flexible structures from noisy tomographic projections.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><doi>10.48550/arxiv.2209.05546</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2022-12
issn 2331-8422
language eng
recordid cdi_proquest_journals_2714195420
source Publicly Available Content Database
subjects Amino acids
Atomic structure
Chains
Chemical bonds
Datasets
Eigenvectors
Electron microscopes
Flexible structures
Machine learning
Manifolds (mathematics)
Two dimensional models
title Spectral decomposition of atomic structures in heterogeneous cryo-EM
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T15%3A44%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Spectral%20decomposition%20of%20atomic%20structures%20in%20heterogeneous%20cryo-EM&rft.jtitle=arXiv.org&rft.au=Esteve-Yag%C3%BCe,%20Carlos&rft.date=2022-12-27&rft.eissn=2331-8422&rft_id=info:doi/10.48550/arxiv.2209.05546&rft_dat=%3Cproquest%3E2714195420%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a520-7c70e3513db1f65e3248a6f4dcd99e369974a5c1a419c986fdeec62b0cfc17793%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2714195420&rft_id=info:pmid/&rfr_iscdi=true