Loading…

Restraining the Octahedron Collapse in Lithium and Manganese Rich NCM Cathode toward Suppressing Structure Transformation

Lithium and manganese rich nickel cobalt manganese oxide (LMRNCM), as an attractive high energy density cathode for advanced lithium‐ion batteries (LIBs), suffers from inevitable lattice oxygen release, irreversible transition metal (TM) ion migration, and interface side reactions at high charge cut...

Full description

Saved in:
Bibliographic Details
Published in:Advanced energy materials 2022-09, Vol.12 (35), p.n/a
Main Authors: Xu, Zhou, Guo, Xingzhong, Wang, JunZhang, Yuan, Yifei, Sun, Qing, Tian, Rui, Yang, Hui, Lu, Jun
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c2473-d719becb212581d1cb790aef51e2879b79046fd5be41fb27d49b7d49e179184f3
cites cdi_FETCH-LOGICAL-c2473-d719becb212581d1cb790aef51e2879b79046fd5be41fb27d49b7d49e179184f3
container_end_page n/a
container_issue 35
container_start_page
container_title Advanced energy materials
container_volume 12
creator Xu, Zhou
Guo, Xingzhong
Wang, JunZhang
Yuan, Yifei
Sun, Qing
Tian, Rui
Yang, Hui
Lu, Jun
description Lithium and manganese rich nickel cobalt manganese oxide (LMRNCM), as an attractive high energy density cathode for advanced lithium‐ion batteries (LIBs), suffers from inevitable lattice oxygen release, irreversible transition metal (TM) ion migration, and interface side reactions at high charge cut‐off voltage. Herein, a facile and efficient surface strategy is proposed to stabilize the layered structure by regulating the chemical bond interaction between the polyacrylonitrile (PAN) binder and the LMRNCM particles. Due to the high retention of discharge specific capacity and average discharge voltage, the energy density retention of the PAN‐modified LMRNCM sample is up to 80.12% after 300 cycles at 100 mA g−1 current density, and the initial Coulombic efficiency and rate capacity are also improved simultaneously. Experimental and density functional theory evidence demonstrates that the exceptional performance is caused by the coordination bond interaction between the carbon‐nitrogen‐triple‐bond of PAN and the TM ion in the unstable transition metal oxygen octahedron. The interaction suppresses the irreversible migration of TM ions by increasing the energy barrier, and ensures that the PAN adheres to the LMRNCM particles tightly, which relieves electrolyte corrosion and enhances cohesiveness. This work exploits a modification strategy to stabilize the LMRNCM‐layered structure for high‐energy density LIB applications. Carbon‐nitrogen‐triple‐bonds are introduced by using polyacrylonitrile as a binder for a lithium and manganese rich nickel cobalt manganese cathode. The coordination bond interaction between the carbon‐nitrogen‐triple‐bond and the unstable transition metal ion suppresses the collapse of the transition metal oxygen octahedron. The interaction also alleviates the corrosion of the electrolyte and the stripping of cathode particles from the current collector.
doi_str_mv 10.1002/aenm.202201323
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2714249958</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2714249958</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2473-d719becb212581d1cb790aef51e2879b79046fd5be41fb27d49b7d49e179184f3</originalsourceid><addsrcrecordid>eNqFUMlqwzAQFaWFhjTXngU9J5VkObaPwaQLZIEkPRvZHscKtuRKMiF_X5mU9Ng5zPreDPMQeqZkRglhrwJUO2OEMUIDFtyhEZ1TPp3HnNzf8oA9oom1J-KNJ5QEwQhddmCdEVJJdcSuBrwtnKihNFrhVDeN6CxgqfBKulr2LRaqxGuhjkKBH-xkUeNNusapcLUuATt9FqbE-77rDFg7LN070xeuN4APRihbadMKJ7V6Qg-VaCxMfuMYfb0tD-nHdLV9_0wXq2nBeBRMy4gmORQ5oyyMaUmLPEqIgCqkwOIoGSo-r8owB06rnEUl9z3vgEYJjXkVjNHLdW9n9Hfvv81OujfKn8xYRDnjSRLGHjW7ogqjrTVQZZ2RrTCXjJJsUDgbFM5uCntCciWcZQOXf9DZYrlZ_3F_AGi7gMU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2714249958</pqid></control><display><type>article</type><title>Restraining the Octahedron Collapse in Lithium and Manganese Rich NCM Cathode toward Suppressing Structure Transformation</title><source>Wiley-Blackwell Read &amp; Publish Collection</source><creator>Xu, Zhou ; Guo, Xingzhong ; Wang, JunZhang ; Yuan, Yifei ; Sun, Qing ; Tian, Rui ; Yang, Hui ; Lu, Jun</creator><creatorcontrib>Xu, Zhou ; Guo, Xingzhong ; Wang, JunZhang ; Yuan, Yifei ; Sun, Qing ; Tian, Rui ; Yang, Hui ; Lu, Jun</creatorcontrib><description>Lithium and manganese rich nickel cobalt manganese oxide (LMRNCM), as an attractive high energy density cathode for advanced lithium‐ion batteries (LIBs), suffers from inevitable lattice oxygen release, irreversible transition metal (TM) ion migration, and interface side reactions at high charge cut‐off voltage. Herein, a facile and efficient surface strategy is proposed to stabilize the layered structure by regulating the chemical bond interaction between the polyacrylonitrile (PAN) binder and the LMRNCM particles. Due to the high retention of discharge specific capacity and average discharge voltage, the energy density retention of the PAN‐modified LMRNCM sample is up to 80.12% after 300 cycles at 100 mA g−1 current density, and the initial Coulombic efficiency and rate capacity are also improved simultaneously. Experimental and density functional theory evidence demonstrates that the exceptional performance is caused by the coordination bond interaction between the carbon‐nitrogen‐triple‐bond of PAN and the TM ion in the unstable transition metal oxygen octahedron. The interaction suppresses the irreversible migration of TM ions by increasing the energy barrier, and ensures that the PAN adheres to the LMRNCM particles tightly, which relieves electrolyte corrosion and enhances cohesiveness. This work exploits a modification strategy to stabilize the LMRNCM‐layered structure for high‐energy density LIB applications. Carbon‐nitrogen‐triple‐bonds are introduced by using polyacrylonitrile as a binder for a lithium and manganese rich nickel cobalt manganese cathode. The coordination bond interaction between the carbon‐nitrogen‐triple‐bond and the unstable transition metal ion suppresses the collapse of the transition metal oxygen octahedron. The interaction also alleviates the corrosion of the electrolyte and the stripping of cathode particles from the current collector.</description><identifier>ISSN: 1614-6832</identifier><identifier>EISSN: 1614-6840</identifier><identifier>DOI: 10.1002/aenm.202201323</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>Cathodes ; Chemical bonds ; Cobalt compounds ; coordination bond interactions ; Density functional theory ; Discharge ; Electric potential ; Ion migration ; Lithium ; Lithium-ion batteries ; LMRNCM ; Manganese ; Oxygen ; Polyacrylonitrile ; polyacrylonitrile binders ; surface modifications ; transition metal ions ; Transition metals ; Voltage</subject><ispartof>Advanced energy materials, 2022-09, Vol.12 (35), p.n/a</ispartof><rights>2022 Wiley‐VCH GmbH</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2473-d719becb212581d1cb790aef51e2879b79046fd5be41fb27d49b7d49e179184f3</citedby><cites>FETCH-LOGICAL-c2473-d719becb212581d1cb790aef51e2879b79046fd5be41fb27d49b7d49e179184f3</cites><orcidid>0000-0003-0858-8577</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Xu, Zhou</creatorcontrib><creatorcontrib>Guo, Xingzhong</creatorcontrib><creatorcontrib>Wang, JunZhang</creatorcontrib><creatorcontrib>Yuan, Yifei</creatorcontrib><creatorcontrib>Sun, Qing</creatorcontrib><creatorcontrib>Tian, Rui</creatorcontrib><creatorcontrib>Yang, Hui</creatorcontrib><creatorcontrib>Lu, Jun</creatorcontrib><title>Restraining the Octahedron Collapse in Lithium and Manganese Rich NCM Cathode toward Suppressing Structure Transformation</title><title>Advanced energy materials</title><description>Lithium and manganese rich nickel cobalt manganese oxide (LMRNCM), as an attractive high energy density cathode for advanced lithium‐ion batteries (LIBs), suffers from inevitable lattice oxygen release, irreversible transition metal (TM) ion migration, and interface side reactions at high charge cut‐off voltage. Herein, a facile and efficient surface strategy is proposed to stabilize the layered structure by regulating the chemical bond interaction between the polyacrylonitrile (PAN) binder and the LMRNCM particles. Due to the high retention of discharge specific capacity and average discharge voltage, the energy density retention of the PAN‐modified LMRNCM sample is up to 80.12% after 300 cycles at 100 mA g−1 current density, and the initial Coulombic efficiency and rate capacity are also improved simultaneously. Experimental and density functional theory evidence demonstrates that the exceptional performance is caused by the coordination bond interaction between the carbon‐nitrogen‐triple‐bond of PAN and the TM ion in the unstable transition metal oxygen octahedron. The interaction suppresses the irreversible migration of TM ions by increasing the energy barrier, and ensures that the PAN adheres to the LMRNCM particles tightly, which relieves electrolyte corrosion and enhances cohesiveness. This work exploits a modification strategy to stabilize the LMRNCM‐layered structure for high‐energy density LIB applications. Carbon‐nitrogen‐triple‐bonds are introduced by using polyacrylonitrile as a binder for a lithium and manganese rich nickel cobalt manganese cathode. The coordination bond interaction between the carbon‐nitrogen‐triple‐bond and the unstable transition metal ion suppresses the collapse of the transition metal oxygen octahedron. The interaction also alleviates the corrosion of the electrolyte and the stripping of cathode particles from the current collector.</description><subject>Cathodes</subject><subject>Chemical bonds</subject><subject>Cobalt compounds</subject><subject>coordination bond interactions</subject><subject>Density functional theory</subject><subject>Discharge</subject><subject>Electric potential</subject><subject>Ion migration</subject><subject>Lithium</subject><subject>Lithium-ion batteries</subject><subject>LMRNCM</subject><subject>Manganese</subject><subject>Oxygen</subject><subject>Polyacrylonitrile</subject><subject>polyacrylonitrile binders</subject><subject>surface modifications</subject><subject>transition metal ions</subject><subject>Transition metals</subject><subject>Voltage</subject><issn>1614-6832</issn><issn>1614-6840</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNqFUMlqwzAQFaWFhjTXngU9J5VkObaPwaQLZIEkPRvZHscKtuRKMiF_X5mU9Ng5zPreDPMQeqZkRglhrwJUO2OEMUIDFtyhEZ1TPp3HnNzf8oA9oom1J-KNJ5QEwQhddmCdEVJJdcSuBrwtnKihNFrhVDeN6CxgqfBKulr2LRaqxGuhjkKBH-xkUeNNusapcLUuATt9FqbE-77rDFg7LN070xeuN4APRihbadMKJ7V6Qg-VaCxMfuMYfb0tD-nHdLV9_0wXq2nBeBRMy4gmORQ5oyyMaUmLPEqIgCqkwOIoGSo-r8owB06rnEUl9z3vgEYJjXkVjNHLdW9n9Hfvv81OujfKn8xYRDnjSRLGHjW7ogqjrTVQZZ2RrTCXjJJsUDgbFM5uCntCciWcZQOXf9DZYrlZ_3F_AGi7gMU</recordid><startdate>20220901</startdate><enddate>20220901</enddate><creator>Xu, Zhou</creator><creator>Guo, Xingzhong</creator><creator>Wang, JunZhang</creator><creator>Yuan, Yifei</creator><creator>Sun, Qing</creator><creator>Tian, Rui</creator><creator>Yang, Hui</creator><creator>Lu, Jun</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-0858-8577</orcidid></search><sort><creationdate>20220901</creationdate><title>Restraining the Octahedron Collapse in Lithium and Manganese Rich NCM Cathode toward Suppressing Structure Transformation</title><author>Xu, Zhou ; Guo, Xingzhong ; Wang, JunZhang ; Yuan, Yifei ; Sun, Qing ; Tian, Rui ; Yang, Hui ; Lu, Jun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2473-d719becb212581d1cb790aef51e2879b79046fd5be41fb27d49b7d49e179184f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Cathodes</topic><topic>Chemical bonds</topic><topic>Cobalt compounds</topic><topic>coordination bond interactions</topic><topic>Density functional theory</topic><topic>Discharge</topic><topic>Electric potential</topic><topic>Ion migration</topic><topic>Lithium</topic><topic>Lithium-ion batteries</topic><topic>LMRNCM</topic><topic>Manganese</topic><topic>Oxygen</topic><topic>Polyacrylonitrile</topic><topic>polyacrylonitrile binders</topic><topic>surface modifications</topic><topic>transition metal ions</topic><topic>Transition metals</topic><topic>Voltage</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xu, Zhou</creatorcontrib><creatorcontrib>Guo, Xingzhong</creatorcontrib><creatorcontrib>Wang, JunZhang</creatorcontrib><creatorcontrib>Yuan, Yifei</creatorcontrib><creatorcontrib>Sun, Qing</creatorcontrib><creatorcontrib>Tian, Rui</creatorcontrib><creatorcontrib>Yang, Hui</creatorcontrib><creatorcontrib>Lu, Jun</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Advanced energy materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xu, Zhou</au><au>Guo, Xingzhong</au><au>Wang, JunZhang</au><au>Yuan, Yifei</au><au>Sun, Qing</au><au>Tian, Rui</au><au>Yang, Hui</au><au>Lu, Jun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Restraining the Octahedron Collapse in Lithium and Manganese Rich NCM Cathode toward Suppressing Structure Transformation</atitle><jtitle>Advanced energy materials</jtitle><date>2022-09-01</date><risdate>2022</risdate><volume>12</volume><issue>35</issue><epage>n/a</epage><issn>1614-6832</issn><eissn>1614-6840</eissn><abstract>Lithium and manganese rich nickel cobalt manganese oxide (LMRNCM), as an attractive high energy density cathode for advanced lithium‐ion batteries (LIBs), suffers from inevitable lattice oxygen release, irreversible transition metal (TM) ion migration, and interface side reactions at high charge cut‐off voltage. Herein, a facile and efficient surface strategy is proposed to stabilize the layered structure by regulating the chemical bond interaction between the polyacrylonitrile (PAN) binder and the LMRNCM particles. Due to the high retention of discharge specific capacity and average discharge voltage, the energy density retention of the PAN‐modified LMRNCM sample is up to 80.12% after 300 cycles at 100 mA g−1 current density, and the initial Coulombic efficiency and rate capacity are also improved simultaneously. Experimental and density functional theory evidence demonstrates that the exceptional performance is caused by the coordination bond interaction between the carbon‐nitrogen‐triple‐bond of PAN and the TM ion in the unstable transition metal oxygen octahedron. The interaction suppresses the irreversible migration of TM ions by increasing the energy barrier, and ensures that the PAN adheres to the LMRNCM particles tightly, which relieves electrolyte corrosion and enhances cohesiveness. This work exploits a modification strategy to stabilize the LMRNCM‐layered structure for high‐energy density LIB applications. Carbon‐nitrogen‐triple‐bonds are introduced by using polyacrylonitrile as a binder for a lithium and manganese rich nickel cobalt manganese cathode. The coordination bond interaction between the carbon‐nitrogen‐triple‐bond and the unstable transition metal ion suppresses the collapse of the transition metal oxygen octahedron. The interaction also alleviates the corrosion of the electrolyte and the stripping of cathode particles from the current collector.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/aenm.202201323</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0003-0858-8577</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1614-6832
ispartof Advanced energy materials, 2022-09, Vol.12 (35), p.n/a
issn 1614-6832
1614-6840
language eng
recordid cdi_proquest_journals_2714249958
source Wiley-Blackwell Read & Publish Collection
subjects Cathodes
Chemical bonds
Cobalt compounds
coordination bond interactions
Density functional theory
Discharge
Electric potential
Ion migration
Lithium
Lithium-ion batteries
LMRNCM
Manganese
Oxygen
Polyacrylonitrile
polyacrylonitrile binders
surface modifications
transition metal ions
Transition metals
Voltage
title Restraining the Octahedron Collapse in Lithium and Manganese Rich NCM Cathode toward Suppressing Structure Transformation
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T05%3A21%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Restraining%20the%20Octahedron%20Collapse%20in%20Lithium%20and%20Manganese%20Rich%20NCM%20Cathode%20toward%20Suppressing%20Structure%20Transformation&rft.jtitle=Advanced%20energy%20materials&rft.au=Xu,%20Zhou&rft.date=2022-09-01&rft.volume=12&rft.issue=35&rft.epage=n/a&rft.issn=1614-6832&rft.eissn=1614-6840&rft_id=info:doi/10.1002/aenm.202201323&rft_dat=%3Cproquest_cross%3E2714249958%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c2473-d719becb212581d1cb790aef51e2879b79046fd5be41fb27d49b7d49e179184f3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2714249958&rft_id=info:pmid/&rfr_iscdi=true