Loading…
Over 15% Efficiency PbS Quantum‐Dot Solar Cells by Synergistic Effects of Three Interface Engineering: Reducing Nonradiative Recombination and Balancing Charge Carrier Extraction
Lead sulfide colloidal quantum dot solar cells (CQDSCs), the next generation of photovoltaics, are hampered by non‐radiative recombination induced by defects and an electron‐hole extraction imbalance. CQDSCs have three interfaces: CQD/CQD, electron transport layer (ETL)/CQD, and CQD/hole transport l...
Saved in:
Published in: | Advanced energy materials 2022-09, Vol.12 (35), p.n/a |
---|---|
Main Authors: | , , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Lead sulfide colloidal quantum dot solar cells (CQDSCs), the next generation of photovoltaics, are hampered by non‐radiative recombination induced by defects and an electron‐hole extraction imbalance. CQDSCs have three interfaces: CQD/CQD, electron transport layer (ETL)/CQD, and CQD/hole transport layer (HTL), and modifying one of these interfaces does not fix the problem stated above. Here, coordinated control and passivation of the three interfaces in PbS CQDSCs are presented and it is shown that the synergistic effects may improve charge transport and charge carrier extraction balance and minimize non‐radiative recombination simultaneously. A facile method is developed for epitaxially growing an ultrathin perovskite shell on the CQD surface to passivate the CQD/CQD interface, resulting in CQD absorber layers with long carrier diffusion lengths. With the introduction of organic films with adjustable electrical characteristics, the influence of ETL/CQD interfacial modifications on carrier transport and recombination is investigated. An excessive increase in the electron extraction rate reduces the fill factor and solar efficiency, as discovered. Therefore a modified layer is created at the CQD/HTL interface to promote hole extraction, which enhances charge extraction balance and passivates the interface. Finally, PbS CQDSCs exhibit a power conversion efficiency of 15.45%, a record for Pb chalcogenide CQDSCs.
An innovative interface modification method developed for the three interfaces of a lead sulfide colloidal quantum dot solar cell allows precise control of the photogenerated carriers across the device, balancing carrier extraction while minimizing nonradiative recombination at each interface of the device, increasing carrier extraction efficiency at the maximum power point and power conversion efficiency by over 15%. |
---|---|
ISSN: | 1614-6832 1614-6840 |
DOI: | 10.1002/aenm.202201676 |