Loading…

Path-Restore: Learning Network Path Selection for Image Restoration

Very deep Convolutional Neural Networks (CNNs) have greatly improved the performance on various image restoration tasks. However, this comes at a price of increasing computational burden, hence limiting their practical usages. We observe that some corrupted image regions are inherently easier to res...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on pattern analysis and machine intelligence 2022-10, Vol.44 (10), p.7078-7092
Main Authors: Yu, Ke, Wang, Xintao, Dong, Chao, Tang, Xiaoou, Loy, Chen Change
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c328t-14d965fa307c222d202541ebe98e2e5621ada05d063aeb28378b6dabd1ce34c53
cites cdi_FETCH-LOGICAL-c328t-14d965fa307c222d202541ebe98e2e5621ada05d063aeb28378b6dabd1ce34c53
container_end_page 7092
container_issue 10
container_start_page 7078
container_title IEEE transactions on pattern analysis and machine intelligence
container_volume 44
creator Yu, Ke
Wang, Xintao
Dong, Chao
Tang, Xiaoou
Loy, Chen Change
description Very deep Convolutional Neural Networks (CNNs) have greatly improved the performance on various image restoration tasks. However, this comes at a price of increasing computational burden, hence limiting their practical usages. We observe that some corrupted image regions are inherently easier to restore than others since the distortion and content vary within an image. To leverage this, we propose Path-Restore, a multi-path CNN with a pathfinder that can dynamically select an appropriate route for each image region. We train the pathfinder using reinforcement learning with a difficulty-regulated reward. This reward is related to the performance, complexity and "the difficulty of restoring a region". A policy mask is further investigated to jointly process all the image regions. We conduct experiments on denoising and mixed restoration tasks. The results show that our method achieves comparable or superior performance to existing approaches with less computational cost. In particular, Path-Restore is effective for real-world denoising, where the noise distribution varies across different regions on a single image. Compared to the state-of-the-art RIDNet [1], our method achieves comparable performance and runs 2.7x faster on the realistic Darmstadt Noise Dataset [2]. Models and codes are available on the project page: https://www.mmlab-ntu.com/project/pathrestore/ .
doi_str_mv 10.1109/TPAMI.2021.3096255
format article
fullrecord <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_proquest_journals_2714892261</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9483659</ieee_id><sourcerecordid>2551577531</sourcerecordid><originalsourceid>FETCH-LOGICAL-c328t-14d965fa307c222d202541ebe98e2e5621ada05d063aeb28378b6dabd1ce34c53</originalsourceid><addsrcrecordid>eNpdkMtOwzAQRS0EoqXwA7CJxIZNij2OE5tdVfGoVKCCsracZFJS0qTYqRB_j0MqFqws2efMXF9CzhkdM0bV9XIxeZyNgQIbc6piEOKADIHFNFSg4JAMKYshlBLkgJw4t6aURYLyYzLgkYe9MCTThWnfwxd0bWPxJpijsXVZr4InbL8a-xF0z8ErVpi1ZVMHRWOD2casMOgV092ekqPCVA7P9ueIvN3dLqcP4fz5fjadzMOMg2xDFuUqFoXhNMkAIPfBRcQwRSUR0MdhJjdU5DTmBlOQPJFpnJs0ZxnyKBN8RK76uVvbfO78fr0pXYZVZWpsdk77PzGRJIIzj17-Q9fNztY-nYaERVIBxB0FPZXZxjmLhd7acmPst2ZUdxXr34p1V7HeV-yli14qEfFPUJHksVD8B6k9dGA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2714892261</pqid></control><display><type>article</type><title>Path-Restore: Learning Network Path Selection for Image Restoration</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Yu, Ke ; Wang, Xintao ; Dong, Chao ; Tang, Xiaoou ; Loy, Chen Change</creator><creatorcontrib>Yu, Ke ; Wang, Xintao ; Dong, Chao ; Tang, Xiaoou ; Loy, Chen Change</creatorcontrib><description>Very deep Convolutional Neural Networks (CNNs) have greatly improved the performance on various image restoration tasks. However, this comes at a price of increasing computational burden, hence limiting their practical usages. We observe that some corrupted image regions are inherently easier to restore than others since the distortion and content vary within an image. To leverage this, we propose Path-Restore, a multi-path CNN with a pathfinder that can dynamically select an appropriate route for each image region. We train the pathfinder using reinforcement learning with a difficulty-regulated reward. This reward is related to the performance, complexity and "the difficulty of restoring a region". A policy mask is further investigated to jointly process all the image regions. We conduct experiments on denoising and mixed restoration tasks. The results show that our method achieves comparable or superior performance to existing approaches with less computational cost. In particular, Path-Restore is effective for real-world denoising, where the noise distribution varies across different regions on a single image. Compared to the state-of-the-art RIDNet [1], our method achieves comparable performance and runs 2.7x faster on the realistic Darmstadt Noise Dataset [2]. Models and codes are available on the project page: https://www.mmlab-ntu.com/project/pathrestore/ .</description><identifier>ISSN: 0162-8828</identifier><identifier>EISSN: 2160-9292</identifier><identifier>EISSN: 1939-3539</identifier><identifier>DOI: 10.1109/TPAMI.2021.3096255</identifier><identifier>PMID: 34255625</identifier><identifier>CODEN: ITPIDJ</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Artificial neural networks ; Complexity theory ; Computing costs ; deep reinforcement learning ; denoising ; Distortion ; dynamic network ; Image restoration ; Learning ; Noise reduction ; Reinforcement learning ; Route selection ; Task analysis ; Training</subject><ispartof>IEEE transactions on pattern analysis and machine intelligence, 2022-10, Vol.44 (10), p.7078-7092</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c328t-14d965fa307c222d202541ebe98e2e5621ada05d063aeb28378b6dabd1ce34c53</citedby><cites>FETCH-LOGICAL-c328t-14d965fa307c222d202541ebe98e2e5621ada05d063aeb28378b6dabd1ce34c53</cites><orcidid>0000-0002-4185-5668 ; 0000-0001-5345-1591 ; 0000-0003-2260-8079</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9483659$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids></links><search><creatorcontrib>Yu, Ke</creatorcontrib><creatorcontrib>Wang, Xintao</creatorcontrib><creatorcontrib>Dong, Chao</creatorcontrib><creatorcontrib>Tang, Xiaoou</creatorcontrib><creatorcontrib>Loy, Chen Change</creatorcontrib><title>Path-Restore: Learning Network Path Selection for Image Restoration</title><title>IEEE transactions on pattern analysis and machine intelligence</title><addtitle>TPAMI</addtitle><description>Very deep Convolutional Neural Networks (CNNs) have greatly improved the performance on various image restoration tasks. However, this comes at a price of increasing computational burden, hence limiting their practical usages. We observe that some corrupted image regions are inherently easier to restore than others since the distortion and content vary within an image. To leverage this, we propose Path-Restore, a multi-path CNN with a pathfinder that can dynamically select an appropriate route for each image region. We train the pathfinder using reinforcement learning with a difficulty-regulated reward. This reward is related to the performance, complexity and "the difficulty of restoring a region". A policy mask is further investigated to jointly process all the image regions. We conduct experiments on denoising and mixed restoration tasks. The results show that our method achieves comparable or superior performance to existing approaches with less computational cost. In particular, Path-Restore is effective for real-world denoising, where the noise distribution varies across different regions on a single image. Compared to the state-of-the-art RIDNet [1], our method achieves comparable performance and runs 2.7x faster on the realistic Darmstadt Noise Dataset [2]. Models and codes are available on the project page: https://www.mmlab-ntu.com/project/pathrestore/ .</description><subject>Artificial neural networks</subject><subject>Complexity theory</subject><subject>Computing costs</subject><subject>deep reinforcement learning</subject><subject>denoising</subject><subject>Distortion</subject><subject>dynamic network</subject><subject>Image restoration</subject><subject>Learning</subject><subject>Noise reduction</subject><subject>Reinforcement learning</subject><subject>Route selection</subject><subject>Task analysis</subject><subject>Training</subject><issn>0162-8828</issn><issn>2160-9292</issn><issn>1939-3539</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNpdkMtOwzAQRS0EoqXwA7CJxIZNij2OE5tdVfGoVKCCsracZFJS0qTYqRB_j0MqFqws2efMXF9CzhkdM0bV9XIxeZyNgQIbc6piEOKADIHFNFSg4JAMKYshlBLkgJw4t6aURYLyYzLgkYe9MCTThWnfwxd0bWPxJpijsXVZr4InbL8a-xF0z8ErVpi1ZVMHRWOD2casMOgV092ekqPCVA7P9ueIvN3dLqcP4fz5fjadzMOMg2xDFuUqFoXhNMkAIPfBRcQwRSUR0MdhJjdU5DTmBlOQPJFpnJs0ZxnyKBN8RK76uVvbfO78fr0pXYZVZWpsdk77PzGRJIIzj17-Q9fNztY-nYaERVIBxB0FPZXZxjmLhd7acmPst2ZUdxXr34p1V7HeV-yli14qEfFPUJHksVD8B6k9dGA</recordid><startdate>20221001</startdate><enddate>20221001</enddate><creator>Yu, Ke</creator><creator>Wang, Xintao</creator><creator>Dong, Chao</creator><creator>Tang, Xiaoou</creator><creator>Loy, Chen Change</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-4185-5668</orcidid><orcidid>https://orcid.org/0000-0001-5345-1591</orcidid><orcidid>https://orcid.org/0000-0003-2260-8079</orcidid></search><sort><creationdate>20221001</creationdate><title>Path-Restore: Learning Network Path Selection for Image Restoration</title><author>Yu, Ke ; Wang, Xintao ; Dong, Chao ; Tang, Xiaoou ; Loy, Chen Change</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c328t-14d965fa307c222d202541ebe98e2e5621ada05d063aeb28378b6dabd1ce34c53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Artificial neural networks</topic><topic>Complexity theory</topic><topic>Computing costs</topic><topic>deep reinforcement learning</topic><topic>denoising</topic><topic>Distortion</topic><topic>dynamic network</topic><topic>Image restoration</topic><topic>Learning</topic><topic>Noise reduction</topic><topic>Reinforcement learning</topic><topic>Route selection</topic><topic>Task analysis</topic><topic>Training</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yu, Ke</creatorcontrib><creatorcontrib>Wang, Xintao</creatorcontrib><creatorcontrib>Dong, Chao</creatorcontrib><creatorcontrib>Tang, Xiaoou</creatorcontrib><creatorcontrib>Loy, Chen Change</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transactions on pattern analysis and machine intelligence</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yu, Ke</au><au>Wang, Xintao</au><au>Dong, Chao</au><au>Tang, Xiaoou</au><au>Loy, Chen Change</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Path-Restore: Learning Network Path Selection for Image Restoration</atitle><jtitle>IEEE transactions on pattern analysis and machine intelligence</jtitle><stitle>TPAMI</stitle><date>2022-10-01</date><risdate>2022</risdate><volume>44</volume><issue>10</issue><spage>7078</spage><epage>7092</epage><pages>7078-7092</pages><issn>0162-8828</issn><eissn>2160-9292</eissn><eissn>1939-3539</eissn><coden>ITPIDJ</coden><abstract>Very deep Convolutional Neural Networks (CNNs) have greatly improved the performance on various image restoration tasks. However, this comes at a price of increasing computational burden, hence limiting their practical usages. We observe that some corrupted image regions are inherently easier to restore than others since the distortion and content vary within an image. To leverage this, we propose Path-Restore, a multi-path CNN with a pathfinder that can dynamically select an appropriate route for each image region. We train the pathfinder using reinforcement learning with a difficulty-regulated reward. This reward is related to the performance, complexity and "the difficulty of restoring a region". A policy mask is further investigated to jointly process all the image regions. We conduct experiments on denoising and mixed restoration tasks. The results show that our method achieves comparable or superior performance to existing approaches with less computational cost. In particular, Path-Restore is effective for real-world denoising, where the noise distribution varies across different regions on a single image. Compared to the state-of-the-art RIDNet [1], our method achieves comparable performance and runs 2.7x faster on the realistic Darmstadt Noise Dataset [2]. Models and codes are available on the project page: https://www.mmlab-ntu.com/project/pathrestore/ .</abstract><cop>New York</cop><pub>IEEE</pub><pmid>34255625</pmid><doi>10.1109/TPAMI.2021.3096255</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0002-4185-5668</orcidid><orcidid>https://orcid.org/0000-0001-5345-1591</orcidid><orcidid>https://orcid.org/0000-0003-2260-8079</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0162-8828
ispartof IEEE transactions on pattern analysis and machine intelligence, 2022-10, Vol.44 (10), p.7078-7092
issn 0162-8828
2160-9292
1939-3539
language eng
recordid cdi_proquest_journals_2714892261
source IEEE Electronic Library (IEL) Journals
subjects Artificial neural networks
Complexity theory
Computing costs
deep reinforcement learning
denoising
Distortion
dynamic network
Image restoration
Learning
Noise reduction
Reinforcement learning
Route selection
Task analysis
Training
title Path-Restore: Learning Network Path Selection for Image Restoration
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T15%3A02%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Path-Restore:%20Learning%20Network%20Path%20Selection%20for%20Image%20Restoration&rft.jtitle=IEEE%20transactions%20on%20pattern%20analysis%20and%20machine%20intelligence&rft.au=Yu,%20Ke&rft.date=2022-10-01&rft.volume=44&rft.issue=10&rft.spage=7078&rft.epage=7092&rft.pages=7078-7092&rft.issn=0162-8828&rft.eissn=2160-9292&rft.coden=ITPIDJ&rft_id=info:doi/10.1109/TPAMI.2021.3096255&rft_dat=%3Cproquest_ieee_%3E2551577531%3C/proquest_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c328t-14d965fa307c222d202541ebe98e2e5621ada05d063aeb28378b6dabd1ce34c53%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2714892261&rft_id=info:pmid/34255625&rft_ieee_id=9483659&rfr_iscdi=true