Loading…
Path-Restore: Learning Network Path Selection for Image Restoration
Very deep Convolutional Neural Networks (CNNs) have greatly improved the performance on various image restoration tasks. However, this comes at a price of increasing computational burden, hence limiting their practical usages. We observe that some corrupted image regions are inherently easier to res...
Saved in:
Published in: | IEEE transactions on pattern analysis and machine intelligence 2022-10, Vol.44 (10), p.7078-7092 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c328t-14d965fa307c222d202541ebe98e2e5621ada05d063aeb28378b6dabd1ce34c53 |
---|---|
cites | cdi_FETCH-LOGICAL-c328t-14d965fa307c222d202541ebe98e2e5621ada05d063aeb28378b6dabd1ce34c53 |
container_end_page | 7092 |
container_issue | 10 |
container_start_page | 7078 |
container_title | IEEE transactions on pattern analysis and machine intelligence |
container_volume | 44 |
creator | Yu, Ke Wang, Xintao Dong, Chao Tang, Xiaoou Loy, Chen Change |
description | Very deep Convolutional Neural Networks (CNNs) have greatly improved the performance on various image restoration tasks. However, this comes at a price of increasing computational burden, hence limiting their practical usages. We observe that some corrupted image regions are inherently easier to restore than others since the distortion and content vary within an image. To leverage this, we propose Path-Restore, a multi-path CNN with a pathfinder that can dynamically select an appropriate route for each image region. We train the pathfinder using reinforcement learning with a difficulty-regulated reward. This reward is related to the performance, complexity and "the difficulty of restoring a region". A policy mask is further investigated to jointly process all the image regions. We conduct experiments on denoising and mixed restoration tasks. The results show that our method achieves comparable or superior performance to existing approaches with less computational cost. In particular, Path-Restore is effective for real-world denoising, where the noise distribution varies across different regions on a single image. Compared to the state-of-the-art RIDNet [1], our method achieves comparable performance and runs 2.7x faster on the realistic Darmstadt Noise Dataset [2]. Models and codes are available on the project page: https://www.mmlab-ntu.com/project/pathrestore/ . |
doi_str_mv | 10.1109/TPAMI.2021.3096255 |
format | article |
fullrecord | <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_proquest_journals_2714892261</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9483659</ieee_id><sourcerecordid>2551577531</sourcerecordid><originalsourceid>FETCH-LOGICAL-c328t-14d965fa307c222d202541ebe98e2e5621ada05d063aeb28378b6dabd1ce34c53</originalsourceid><addsrcrecordid>eNpdkMtOwzAQRS0EoqXwA7CJxIZNij2OE5tdVfGoVKCCsracZFJS0qTYqRB_j0MqFqws2efMXF9CzhkdM0bV9XIxeZyNgQIbc6piEOKADIHFNFSg4JAMKYshlBLkgJw4t6aURYLyYzLgkYe9MCTThWnfwxd0bWPxJpijsXVZr4InbL8a-xF0z8ErVpi1ZVMHRWOD2casMOgV092ekqPCVA7P9ueIvN3dLqcP4fz5fjadzMOMg2xDFuUqFoXhNMkAIPfBRcQwRSUR0MdhJjdU5DTmBlOQPJFpnJs0ZxnyKBN8RK76uVvbfO78fr0pXYZVZWpsdk77PzGRJIIzj17-Q9fNztY-nYaERVIBxB0FPZXZxjmLhd7acmPst2ZUdxXr34p1V7HeV-yli14qEfFPUJHksVD8B6k9dGA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2714892261</pqid></control><display><type>article</type><title>Path-Restore: Learning Network Path Selection for Image Restoration</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Yu, Ke ; Wang, Xintao ; Dong, Chao ; Tang, Xiaoou ; Loy, Chen Change</creator><creatorcontrib>Yu, Ke ; Wang, Xintao ; Dong, Chao ; Tang, Xiaoou ; Loy, Chen Change</creatorcontrib><description>Very deep Convolutional Neural Networks (CNNs) have greatly improved the performance on various image restoration tasks. However, this comes at a price of increasing computational burden, hence limiting their practical usages. We observe that some corrupted image regions are inherently easier to restore than others since the distortion and content vary within an image. To leverage this, we propose Path-Restore, a multi-path CNN with a pathfinder that can dynamically select an appropriate route for each image region. We train the pathfinder using reinforcement learning with a difficulty-regulated reward. This reward is related to the performance, complexity and "the difficulty of restoring a region". A policy mask is further investigated to jointly process all the image regions. We conduct experiments on denoising and mixed restoration tasks. The results show that our method achieves comparable or superior performance to existing approaches with less computational cost. In particular, Path-Restore is effective for real-world denoising, where the noise distribution varies across different regions on a single image. Compared to the state-of-the-art RIDNet [1], our method achieves comparable performance and runs 2.7x faster on the realistic Darmstadt Noise Dataset [2]. Models and codes are available on the project page: https://www.mmlab-ntu.com/project/pathrestore/ .</description><identifier>ISSN: 0162-8828</identifier><identifier>EISSN: 2160-9292</identifier><identifier>EISSN: 1939-3539</identifier><identifier>DOI: 10.1109/TPAMI.2021.3096255</identifier><identifier>PMID: 34255625</identifier><identifier>CODEN: ITPIDJ</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Artificial neural networks ; Complexity theory ; Computing costs ; deep reinforcement learning ; denoising ; Distortion ; dynamic network ; Image restoration ; Learning ; Noise reduction ; Reinforcement learning ; Route selection ; Task analysis ; Training</subject><ispartof>IEEE transactions on pattern analysis and machine intelligence, 2022-10, Vol.44 (10), p.7078-7092</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c328t-14d965fa307c222d202541ebe98e2e5621ada05d063aeb28378b6dabd1ce34c53</citedby><cites>FETCH-LOGICAL-c328t-14d965fa307c222d202541ebe98e2e5621ada05d063aeb28378b6dabd1ce34c53</cites><orcidid>0000-0002-4185-5668 ; 0000-0001-5345-1591 ; 0000-0003-2260-8079</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9483659$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids></links><search><creatorcontrib>Yu, Ke</creatorcontrib><creatorcontrib>Wang, Xintao</creatorcontrib><creatorcontrib>Dong, Chao</creatorcontrib><creatorcontrib>Tang, Xiaoou</creatorcontrib><creatorcontrib>Loy, Chen Change</creatorcontrib><title>Path-Restore: Learning Network Path Selection for Image Restoration</title><title>IEEE transactions on pattern analysis and machine intelligence</title><addtitle>TPAMI</addtitle><description>Very deep Convolutional Neural Networks (CNNs) have greatly improved the performance on various image restoration tasks. However, this comes at a price of increasing computational burden, hence limiting their practical usages. We observe that some corrupted image regions are inherently easier to restore than others since the distortion and content vary within an image. To leverage this, we propose Path-Restore, a multi-path CNN with a pathfinder that can dynamically select an appropriate route for each image region. We train the pathfinder using reinforcement learning with a difficulty-regulated reward. This reward is related to the performance, complexity and "the difficulty of restoring a region". A policy mask is further investigated to jointly process all the image regions. We conduct experiments on denoising and mixed restoration tasks. The results show that our method achieves comparable or superior performance to existing approaches with less computational cost. In particular, Path-Restore is effective for real-world denoising, where the noise distribution varies across different regions on a single image. Compared to the state-of-the-art RIDNet [1], our method achieves comparable performance and runs 2.7x faster on the realistic Darmstadt Noise Dataset [2]. Models and codes are available on the project page: https://www.mmlab-ntu.com/project/pathrestore/ .</description><subject>Artificial neural networks</subject><subject>Complexity theory</subject><subject>Computing costs</subject><subject>deep reinforcement learning</subject><subject>denoising</subject><subject>Distortion</subject><subject>dynamic network</subject><subject>Image restoration</subject><subject>Learning</subject><subject>Noise reduction</subject><subject>Reinforcement learning</subject><subject>Route selection</subject><subject>Task analysis</subject><subject>Training</subject><issn>0162-8828</issn><issn>2160-9292</issn><issn>1939-3539</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNpdkMtOwzAQRS0EoqXwA7CJxIZNij2OE5tdVfGoVKCCsracZFJS0qTYqRB_j0MqFqws2efMXF9CzhkdM0bV9XIxeZyNgQIbc6piEOKADIHFNFSg4JAMKYshlBLkgJw4t6aURYLyYzLgkYe9MCTThWnfwxd0bWPxJpijsXVZr4InbL8a-xF0z8ErVpi1ZVMHRWOD2casMOgV092ekqPCVA7P9ueIvN3dLqcP4fz5fjadzMOMg2xDFuUqFoXhNMkAIPfBRcQwRSUR0MdhJjdU5DTmBlOQPJFpnJs0ZxnyKBN8RK76uVvbfO78fr0pXYZVZWpsdk77PzGRJIIzj17-Q9fNztY-nYaERVIBxB0FPZXZxjmLhd7acmPst2ZUdxXr34p1V7HeV-yli14qEfFPUJHksVD8B6k9dGA</recordid><startdate>20221001</startdate><enddate>20221001</enddate><creator>Yu, Ke</creator><creator>Wang, Xintao</creator><creator>Dong, Chao</creator><creator>Tang, Xiaoou</creator><creator>Loy, Chen Change</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-4185-5668</orcidid><orcidid>https://orcid.org/0000-0001-5345-1591</orcidid><orcidid>https://orcid.org/0000-0003-2260-8079</orcidid></search><sort><creationdate>20221001</creationdate><title>Path-Restore: Learning Network Path Selection for Image Restoration</title><author>Yu, Ke ; Wang, Xintao ; Dong, Chao ; Tang, Xiaoou ; Loy, Chen Change</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c328t-14d965fa307c222d202541ebe98e2e5621ada05d063aeb28378b6dabd1ce34c53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Artificial neural networks</topic><topic>Complexity theory</topic><topic>Computing costs</topic><topic>deep reinforcement learning</topic><topic>denoising</topic><topic>Distortion</topic><topic>dynamic network</topic><topic>Image restoration</topic><topic>Learning</topic><topic>Noise reduction</topic><topic>Reinforcement learning</topic><topic>Route selection</topic><topic>Task analysis</topic><topic>Training</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yu, Ke</creatorcontrib><creatorcontrib>Wang, Xintao</creatorcontrib><creatorcontrib>Dong, Chao</creatorcontrib><creatorcontrib>Tang, Xiaoou</creatorcontrib><creatorcontrib>Loy, Chen Change</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transactions on pattern analysis and machine intelligence</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yu, Ke</au><au>Wang, Xintao</au><au>Dong, Chao</au><au>Tang, Xiaoou</au><au>Loy, Chen Change</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Path-Restore: Learning Network Path Selection for Image Restoration</atitle><jtitle>IEEE transactions on pattern analysis and machine intelligence</jtitle><stitle>TPAMI</stitle><date>2022-10-01</date><risdate>2022</risdate><volume>44</volume><issue>10</issue><spage>7078</spage><epage>7092</epage><pages>7078-7092</pages><issn>0162-8828</issn><eissn>2160-9292</eissn><eissn>1939-3539</eissn><coden>ITPIDJ</coden><abstract>Very deep Convolutional Neural Networks (CNNs) have greatly improved the performance on various image restoration tasks. However, this comes at a price of increasing computational burden, hence limiting their practical usages. We observe that some corrupted image regions are inherently easier to restore than others since the distortion and content vary within an image. To leverage this, we propose Path-Restore, a multi-path CNN with a pathfinder that can dynamically select an appropriate route for each image region. We train the pathfinder using reinforcement learning with a difficulty-regulated reward. This reward is related to the performance, complexity and "the difficulty of restoring a region". A policy mask is further investigated to jointly process all the image regions. We conduct experiments on denoising and mixed restoration tasks. The results show that our method achieves comparable or superior performance to existing approaches with less computational cost. In particular, Path-Restore is effective for real-world denoising, where the noise distribution varies across different regions on a single image. Compared to the state-of-the-art RIDNet [1], our method achieves comparable performance and runs 2.7x faster on the realistic Darmstadt Noise Dataset [2]. Models and codes are available on the project page: https://www.mmlab-ntu.com/project/pathrestore/ .</abstract><cop>New York</cop><pub>IEEE</pub><pmid>34255625</pmid><doi>10.1109/TPAMI.2021.3096255</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0002-4185-5668</orcidid><orcidid>https://orcid.org/0000-0001-5345-1591</orcidid><orcidid>https://orcid.org/0000-0003-2260-8079</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0162-8828 |
ispartof | IEEE transactions on pattern analysis and machine intelligence, 2022-10, Vol.44 (10), p.7078-7092 |
issn | 0162-8828 2160-9292 1939-3539 |
language | eng |
recordid | cdi_proquest_journals_2714892261 |
source | IEEE Electronic Library (IEL) Journals |
subjects | Artificial neural networks Complexity theory Computing costs deep reinforcement learning denoising Distortion dynamic network Image restoration Learning Noise reduction Reinforcement learning Route selection Task analysis Training |
title | Path-Restore: Learning Network Path Selection for Image Restoration |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T15%3A02%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Path-Restore:%20Learning%20Network%20Path%20Selection%20for%20Image%20Restoration&rft.jtitle=IEEE%20transactions%20on%20pattern%20analysis%20and%20machine%20intelligence&rft.au=Yu,%20Ke&rft.date=2022-10-01&rft.volume=44&rft.issue=10&rft.spage=7078&rft.epage=7092&rft.pages=7078-7092&rft.issn=0162-8828&rft.eissn=2160-9292&rft.coden=ITPIDJ&rft_id=info:doi/10.1109/TPAMI.2021.3096255&rft_dat=%3Cproquest_ieee_%3E2551577531%3C/proquest_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c328t-14d965fa307c222d202541ebe98e2e5621ada05d063aeb28378b6dabd1ce34c53%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2714892261&rft_id=info:pmid/34255625&rft_ieee_id=9483659&rfr_iscdi=true |