Loading…
Bootstrap Generalization Ability from Loss Landscape Perspective
Domain generalization aims to learn a model that can generalize well on the unseen test dataset, i.e., out-of-distribution data, which has different distribution from the training dataset. To address domain generalization in computer vision, we introduce the loss landscape theory into this field. Sp...
Saved in:
Published in: | arXiv.org 2023-04 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | |
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Chen, Huanran Shao, Shitong Wang, Ziyi Shang, Zirui Chen, Jin Ji, Xiaofeng Wu, Xinxiao |
description | Domain generalization aims to learn a model that can generalize well on the unseen test dataset, i.e., out-of-distribution data, which has different distribution from the training dataset. To address domain generalization in computer vision, we introduce the loss landscape theory into this field. Specifically, we bootstrap the generalization ability of the deep learning model from the loss landscape perspective in four aspects, including backbone, regularization, training paradigm, and learning rate. We verify the proposed theory on the NICO++, PACS, and VLCS datasets by doing extensive ablation studies as well as visualizations. In addition, we apply this theory in the ECCV 2022 NICO Challenge1 and achieve the 3rd place without using any domain invariant methods. |
format | article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2715914729</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2715914729</sourcerecordid><originalsourceid>FETCH-proquest_journals_27159147293</originalsourceid><addsrcrecordid>eNqNyrsKwjAUgOEgCBbtOwScC-1Ja-3mBS-Dg4N7ifUUUmpOzEkFfXodfACnf_j-kYhAqSxZ5gATETN3aZrCooSiUJFYbYgCB6-dPKBFr3vz1sGQleur6U14ydbTXZ6IWZ60vXGjHcozenbYBPPEmRi3umeMf52K-X532R4T5-kxIIe6o8HbL9VQZkWV5SVU6r_rA3jrOZU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2715914729</pqid></control><display><type>article</type><title>Bootstrap Generalization Ability from Loss Landscape Perspective</title><source>Publicly Available Content (ProQuest)</source><creator>Chen, Huanran ; Shao, Shitong ; Wang, Ziyi ; Shang, Zirui ; Chen, Jin ; Ji, Xiaofeng ; Wu, Xinxiao</creator><creatorcontrib>Chen, Huanran ; Shao, Shitong ; Wang, Ziyi ; Shang, Zirui ; Chen, Jin ; Ji, Xiaofeng ; Wu, Xinxiao</creatorcontrib><description>Domain generalization aims to learn a model that can generalize well on the unseen test dataset, i.e., out-of-distribution data, which has different distribution from the training dataset. To address domain generalization in computer vision, we introduce the loss landscape theory into this field. Specifically, we bootstrap the generalization ability of the deep learning model from the loss landscape perspective in four aspects, including backbone, regularization, training paradigm, and learning rate. We verify the proposed theory on the NICO++, PACS, and VLCS datasets by doing extensive ablation studies as well as visualizations. In addition, we apply this theory in the ECCV 2022 NICO Challenge1 and achieve the 3rd place without using any domain invariant methods.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Ablation ; Computer vision ; Datasets ; Deep learning ; Domains ; Regularization ; Training</subject><ispartof>arXiv.org, 2023-04</ispartof><rights>2023. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2715914729?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>780,784,25752,37011,44589</link.rule.ids></links><search><creatorcontrib>Chen, Huanran</creatorcontrib><creatorcontrib>Shao, Shitong</creatorcontrib><creatorcontrib>Wang, Ziyi</creatorcontrib><creatorcontrib>Shang, Zirui</creatorcontrib><creatorcontrib>Chen, Jin</creatorcontrib><creatorcontrib>Ji, Xiaofeng</creatorcontrib><creatorcontrib>Wu, Xinxiao</creatorcontrib><title>Bootstrap Generalization Ability from Loss Landscape Perspective</title><title>arXiv.org</title><description>Domain generalization aims to learn a model that can generalize well on the unseen test dataset, i.e., out-of-distribution data, which has different distribution from the training dataset. To address domain generalization in computer vision, we introduce the loss landscape theory into this field. Specifically, we bootstrap the generalization ability of the deep learning model from the loss landscape perspective in four aspects, including backbone, regularization, training paradigm, and learning rate. We verify the proposed theory on the NICO++, PACS, and VLCS datasets by doing extensive ablation studies as well as visualizations. In addition, we apply this theory in the ECCV 2022 NICO Challenge1 and achieve the 3rd place without using any domain invariant methods.</description><subject>Ablation</subject><subject>Computer vision</subject><subject>Datasets</subject><subject>Deep learning</subject><subject>Domains</subject><subject>Regularization</subject><subject>Training</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNqNyrsKwjAUgOEgCBbtOwScC-1Ja-3mBS-Dg4N7ifUUUmpOzEkFfXodfACnf_j-kYhAqSxZ5gATETN3aZrCooSiUJFYbYgCB6-dPKBFr3vz1sGQleur6U14ydbTXZ6IWZ60vXGjHcozenbYBPPEmRi3umeMf52K-X532R4T5-kxIIe6o8HbL9VQZkWV5SVU6r_rA3jrOZU</recordid><startdate>20230421</startdate><enddate>20230421</enddate><creator>Chen, Huanran</creator><creator>Shao, Shitong</creator><creator>Wang, Ziyi</creator><creator>Shang, Zirui</creator><creator>Chen, Jin</creator><creator>Ji, Xiaofeng</creator><creator>Wu, Xinxiao</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20230421</creationdate><title>Bootstrap Generalization Ability from Loss Landscape Perspective</title><author>Chen, Huanran ; Shao, Shitong ; Wang, Ziyi ; Shang, Zirui ; Chen, Jin ; Ji, Xiaofeng ; Wu, Xinxiao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_27159147293</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Ablation</topic><topic>Computer vision</topic><topic>Datasets</topic><topic>Deep learning</topic><topic>Domains</topic><topic>Regularization</topic><topic>Training</topic><toplevel>online_resources</toplevel><creatorcontrib>Chen, Huanran</creatorcontrib><creatorcontrib>Shao, Shitong</creatorcontrib><creatorcontrib>Wang, Ziyi</creatorcontrib><creatorcontrib>Shang, Zirui</creatorcontrib><creatorcontrib>Chen, Jin</creatorcontrib><creatorcontrib>Ji, Xiaofeng</creatorcontrib><creatorcontrib>Wu, Xinxiao</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chen, Huanran</au><au>Shao, Shitong</au><au>Wang, Ziyi</au><au>Shang, Zirui</au><au>Chen, Jin</au><au>Ji, Xiaofeng</au><au>Wu, Xinxiao</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Bootstrap Generalization Ability from Loss Landscape Perspective</atitle><jtitle>arXiv.org</jtitle><date>2023-04-21</date><risdate>2023</risdate><eissn>2331-8422</eissn><abstract>Domain generalization aims to learn a model that can generalize well on the unseen test dataset, i.e., out-of-distribution data, which has different distribution from the training dataset. To address domain generalization in computer vision, we introduce the loss landscape theory into this field. Specifically, we bootstrap the generalization ability of the deep learning model from the loss landscape perspective in four aspects, including backbone, regularization, training paradigm, and learning rate. We verify the proposed theory on the NICO++, PACS, and VLCS datasets by doing extensive ablation studies as well as visualizations. In addition, we apply this theory in the ECCV 2022 NICO Challenge1 and achieve the 3rd place without using any domain invariant methods.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2023-04 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2715914729 |
source | Publicly Available Content (ProQuest) |
subjects | Ablation Computer vision Datasets Deep learning Domains Regularization Training |
title | Bootstrap Generalization Ability from Loss Landscape Perspective |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T13%3A17%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Bootstrap%20Generalization%20Ability%20from%20Loss%20Landscape%20Perspective&rft.jtitle=arXiv.org&rft.au=Chen,%20Huanran&rft.date=2023-04-21&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2715914729%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-proquest_journals_27159147293%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2715914729&rft_id=info:pmid/&rfr_iscdi=true |