Loading…
Interactive Effects of Abiotic Stress and Elevated CO2 on Physio-Chemical and Photosynthetic Responses in Suaeda Species
Suaeda fruticosa and S. monoica are important halophytes for ecological rehabilitation of saline lands. We report differential physio-chemical, photosynthetic, and chlorophyll fluorescence responses in these halophytes under 100 mM sodium chloride (NaCl), 50% strength (16.25 ppt) of seawater (SW)-im...
Saved in:
Published in: | Journal of plant growth regulation 2022-10, Vol.41 (7), p.2930-2948 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c319t-f814074aba3303e46d21f987df1f5f5e0c507f339f98aa9ef8a67030be205d5b3 |
---|---|
cites | cdi_FETCH-LOGICAL-c319t-f814074aba3303e46d21f987df1f5f5e0c507f339f98aa9ef8a67030be205d5b3 |
container_end_page | 2948 |
container_issue | 7 |
container_start_page | 2930 |
container_title | Journal of plant growth regulation |
container_volume | 41 |
creator | Haque, Md Intesaful Siddiqui, Shahrukh A. Jha, B. Rathore, Mangal S. |
description | Suaeda fruticosa
and
S. monoica
are important halophytes for ecological rehabilitation of saline lands. We report differential physio-chemical, photosynthetic, and chlorophyll fluorescence responses in these halophytes under 100 mM sodium chloride (NaCl), 50% strength (16.25 ppt) of seawater (SW)-imposed salinity, and 10% polyethylene glycol 6000 imposed osmotic stress at 380 (ambient) and 1200 (elevated) µmol mol
–1
CO
2
concentrations. SW salinity enhanced the growth in both species; however, compared with
S. fruticosa,
the
S. monoica
exhibited comparatively better growth and biomass accumulation under saline conditions at elevated CO
2
. Results demonstrated better photosynthetic performances of
S. monoica
under stress conditions at both levels of CO
2
, and this resulted in higher accumulation of carbon, nitrogen, sugar, and starch contents.
S. monoica
exhibited improved antenna size, electron transfer at PSII donor side, and efficient working of photosynthetic machinery at elevated CO
2
, which might be due to efficient upstream utilization of reducing power to fix the CO
2
. The δ
13
C results supported the operation of C
4
CO
2
fixation in
S. monoica
and C
3
or intermediate pathway of CO
2
fixation in
S. fruticosa
. Lower accumulation of reactive oxygen species, reduced membrane damage, lowered solute potential, and higher accumulation of proline and polyphenol contents indicated elevated CO
2
-induced abiotic stress tolerance in
Suaeda
. Higher activity of antioxidant enzymes in both species at both levels of CO
2
help plants to combat the oxidative stress. Upregulation of
NADP-dependent malic enzyme
and
NADP-dependent malate dehydrogenase
genes indicated their role in abiotic stress tolerance as well as photosynthetic carbon (C) sequestration. Operation of C
4
type CO
2
fixation in
S. monoica
and an intermediate CO
2
fixation in
S. fruticosa
could be the possible reason for the superior photosynthetic efficiency of
S. monoica
under stress conditions at elevated CO
2
. |
doi_str_mv | 10.1007/s00344-021-10485-1 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2716380149</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2716380149</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-f814074aba3303e46d21f987df1f5f5e0c507f339f98aa9ef8a67030be205d5b3</originalsourceid><addsrcrecordid>eNp9kMFOAjEQhhujiYi-gKcmnlen2y3dPRKCSkICET03ZXcqS2C7dgqRt3cBE2-eJjPzfTPJz9i9gEcBoJ8IQGZZAqlIBGS5SsQF64lMqiQXoC9ZD3S30qpQ1-yGaA0gukb32PekiRhsGes98rFzWEbi3vHhsvaxLvkiBiTitqn4eIN7G7Hio1nKfcPnqwPVPhmtcFuXdnNi5isfPR2auMKj_YbU-oaQeN3wxc5iZfmixbJGumVXzm4I735rn308j99Hr8l09jIZDadJKUURE5eLDHRml1ZKkJgNqlS4IteVE045hVAq0E7KohtaW6DL7UCDhCWmoCq1lH32cL7bBv-1Q4pm7Xeh6V6aVIuBzEFkRUelZ6oMniigM22otzYcjABzTNicEzZdwuaUsBGdJM8SdXDzieHv9D_WDxTjfsA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2716380149</pqid></control><display><type>article</type><title>Interactive Effects of Abiotic Stress and Elevated CO2 on Physio-Chemical and Photosynthetic Responses in Suaeda Species</title><source>Springer Link</source><creator>Haque, Md Intesaful ; Siddiqui, Shahrukh A. ; Jha, B. ; Rathore, Mangal S.</creator><creatorcontrib>Haque, Md Intesaful ; Siddiqui, Shahrukh A. ; Jha, B. ; Rathore, Mangal S.</creatorcontrib><description>Suaeda fruticosa
and
S. monoica
are important halophytes for ecological rehabilitation of saline lands. We report differential physio-chemical, photosynthetic, and chlorophyll fluorescence responses in these halophytes under 100 mM sodium chloride (NaCl), 50% strength (16.25 ppt) of seawater (SW)-imposed salinity, and 10% polyethylene glycol 6000 imposed osmotic stress at 380 (ambient) and 1200 (elevated) µmol mol
–1
CO
2
concentrations. SW salinity enhanced the growth in both species; however, compared with
S. fruticosa,
the
S. monoica
exhibited comparatively better growth and biomass accumulation under saline conditions at elevated CO
2
. Results demonstrated better photosynthetic performances of
S. monoica
under stress conditions at both levels of CO
2
, and this resulted in higher accumulation of carbon, nitrogen, sugar, and starch contents.
S. monoica
exhibited improved antenna size, electron transfer at PSII donor side, and efficient working of photosynthetic machinery at elevated CO
2
, which might be due to efficient upstream utilization of reducing power to fix the CO
2
. The δ
13
C results supported the operation of C
4
CO
2
fixation in
S. monoica
and C
3
or intermediate pathway of CO
2
fixation in
S. fruticosa
. Lower accumulation of reactive oxygen species, reduced membrane damage, lowered solute potential, and higher accumulation of proline and polyphenol contents indicated elevated CO
2
-induced abiotic stress tolerance in
Suaeda
. Higher activity of antioxidant enzymes in both species at both levels of CO
2
help plants to combat the oxidative stress. Upregulation of
NADP-dependent malic enzyme
and
NADP-dependent malate dehydrogenase
genes indicated their role in abiotic stress tolerance as well as photosynthetic carbon (C) sequestration. Operation of C
4
type CO
2
fixation in
S. monoica
and an intermediate CO
2
fixation in
S. fruticosa
could be the possible reason for the superior photosynthetic efficiency of
S. monoica
under stress conditions at elevated CO
2
.</description><identifier>ISSN: 0721-7595</identifier><identifier>EISSN: 1435-8107</identifier><identifier>DOI: 10.1007/s00344-021-10485-1</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Abiotic stress ; Accumulation ; Agriculture ; Biomedical and Life Sciences ; Carbon dioxide ; Carbon dioxide fixation ; Chemical analysis ; Chlorophyll ; Damage accumulation ; Electron transfer ; Fixation ; Halophytes ; Life Sciences ; Malate dehydrogenase ; Malic enzyme ; Osmotic stress ; Oxidative stress ; Photosynthesis ; Photosystem II ; Plant Anatomy/Development ; Plant Physiology ; Plant Sciences ; Polyethylene glycol ; Reactive oxygen species ; Rehabilitation ; Salinity ; Salinity effects ; Saprolegnia monoica ; Seawater ; Sodium chloride ; Suaeda ; Water analysis</subject><ispartof>Journal of plant growth regulation, 2022-10, Vol.41 (7), p.2930-2948</ispartof><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021</rights><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-f814074aba3303e46d21f987df1f5f5e0c507f339f98aa9ef8a67030be205d5b3</citedby><cites>FETCH-LOGICAL-c319t-f814074aba3303e46d21f987df1f5f5e0c507f339f98aa9ef8a67030be205d5b3</cites><orcidid>0000-0001-5434-822X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Haque, Md Intesaful</creatorcontrib><creatorcontrib>Siddiqui, Shahrukh A.</creatorcontrib><creatorcontrib>Jha, B.</creatorcontrib><creatorcontrib>Rathore, Mangal S.</creatorcontrib><title>Interactive Effects of Abiotic Stress and Elevated CO2 on Physio-Chemical and Photosynthetic Responses in Suaeda Species</title><title>Journal of plant growth regulation</title><addtitle>J Plant Growth Regul</addtitle><description>Suaeda fruticosa
and
S. monoica
are important halophytes for ecological rehabilitation of saline lands. We report differential physio-chemical, photosynthetic, and chlorophyll fluorescence responses in these halophytes under 100 mM sodium chloride (NaCl), 50% strength (16.25 ppt) of seawater (SW)-imposed salinity, and 10% polyethylene glycol 6000 imposed osmotic stress at 380 (ambient) and 1200 (elevated) µmol mol
–1
CO
2
concentrations. SW salinity enhanced the growth in both species; however, compared with
S. fruticosa,
the
S. monoica
exhibited comparatively better growth and biomass accumulation under saline conditions at elevated CO
2
. Results demonstrated better photosynthetic performances of
S. monoica
under stress conditions at both levels of CO
2
, and this resulted in higher accumulation of carbon, nitrogen, sugar, and starch contents.
S. monoica
exhibited improved antenna size, electron transfer at PSII donor side, and efficient working of photosynthetic machinery at elevated CO
2
, which might be due to efficient upstream utilization of reducing power to fix the CO
2
. The δ
13
C results supported the operation of C
4
CO
2
fixation in
S. monoica
and C
3
or intermediate pathway of CO
2
fixation in
S. fruticosa
. Lower accumulation of reactive oxygen species, reduced membrane damage, lowered solute potential, and higher accumulation of proline and polyphenol contents indicated elevated CO
2
-induced abiotic stress tolerance in
Suaeda
. Higher activity of antioxidant enzymes in both species at both levels of CO
2
help plants to combat the oxidative stress. Upregulation of
NADP-dependent malic enzyme
and
NADP-dependent malate dehydrogenase
genes indicated their role in abiotic stress tolerance as well as photosynthetic carbon (C) sequestration. Operation of C
4
type CO
2
fixation in
S. monoica
and an intermediate CO
2
fixation in
S. fruticosa
could be the possible reason for the superior photosynthetic efficiency of
S. monoica
under stress conditions at elevated CO
2
.</description><subject>Abiotic stress</subject><subject>Accumulation</subject><subject>Agriculture</subject><subject>Biomedical and Life Sciences</subject><subject>Carbon dioxide</subject><subject>Carbon dioxide fixation</subject><subject>Chemical analysis</subject><subject>Chlorophyll</subject><subject>Damage accumulation</subject><subject>Electron transfer</subject><subject>Fixation</subject><subject>Halophytes</subject><subject>Life Sciences</subject><subject>Malate dehydrogenase</subject><subject>Malic enzyme</subject><subject>Osmotic stress</subject><subject>Oxidative stress</subject><subject>Photosynthesis</subject><subject>Photosystem II</subject><subject>Plant Anatomy/Development</subject><subject>Plant Physiology</subject><subject>Plant Sciences</subject><subject>Polyethylene glycol</subject><subject>Reactive oxygen species</subject><subject>Rehabilitation</subject><subject>Salinity</subject><subject>Salinity effects</subject><subject>Saprolegnia monoica</subject><subject>Seawater</subject><subject>Sodium chloride</subject><subject>Suaeda</subject><subject>Water analysis</subject><issn>0721-7595</issn><issn>1435-8107</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kMFOAjEQhhujiYi-gKcmnlen2y3dPRKCSkICET03ZXcqS2C7dgqRt3cBE2-eJjPzfTPJz9i9gEcBoJ8IQGZZAqlIBGS5SsQF64lMqiQXoC9ZD3S30qpQ1-yGaA0gukb32PekiRhsGes98rFzWEbi3vHhsvaxLvkiBiTitqn4eIN7G7Hio1nKfcPnqwPVPhmtcFuXdnNi5isfPR2auMKj_YbU-oaQeN3wxc5iZfmixbJGumVXzm4I735rn308j99Hr8l09jIZDadJKUURE5eLDHRml1ZKkJgNqlS4IteVE045hVAq0E7KohtaW6DL7UCDhCWmoCq1lH32cL7bBv-1Q4pm7Xeh6V6aVIuBzEFkRUelZ6oMniigM22otzYcjABzTNicEzZdwuaUsBGdJM8SdXDzieHv9D_WDxTjfsA</recordid><startdate>20221001</startdate><enddate>20221001</enddate><creator>Haque, Md Intesaful</creator><creator>Siddiqui, Shahrukh A.</creator><creator>Jha, B.</creator><creator>Rathore, Mangal S.</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M7P</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><orcidid>https://orcid.org/0000-0001-5434-822X</orcidid></search><sort><creationdate>20221001</creationdate><title>Interactive Effects of Abiotic Stress and Elevated CO2 on Physio-Chemical and Photosynthetic Responses in Suaeda Species</title><author>Haque, Md Intesaful ; Siddiqui, Shahrukh A. ; Jha, B. ; Rathore, Mangal S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-f814074aba3303e46d21f987df1f5f5e0c507f339f98aa9ef8a67030be205d5b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Abiotic stress</topic><topic>Accumulation</topic><topic>Agriculture</topic><topic>Biomedical and Life Sciences</topic><topic>Carbon dioxide</topic><topic>Carbon dioxide fixation</topic><topic>Chemical analysis</topic><topic>Chlorophyll</topic><topic>Damage accumulation</topic><topic>Electron transfer</topic><topic>Fixation</topic><topic>Halophytes</topic><topic>Life Sciences</topic><topic>Malate dehydrogenase</topic><topic>Malic enzyme</topic><topic>Osmotic stress</topic><topic>Oxidative stress</topic><topic>Photosynthesis</topic><topic>Photosystem II</topic><topic>Plant Anatomy/Development</topic><topic>Plant Physiology</topic><topic>Plant Sciences</topic><topic>Polyethylene glycol</topic><topic>Reactive oxygen species</topic><topic>Rehabilitation</topic><topic>Salinity</topic><topic>Salinity effects</topic><topic>Saprolegnia monoica</topic><topic>Seawater</topic><topic>Sodium chloride</topic><topic>Suaeda</topic><topic>Water analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Haque, Md Intesaful</creatorcontrib><creatorcontrib>Siddiqui, Shahrukh A.</creatorcontrib><creatorcontrib>Jha, B.</creatorcontrib><creatorcontrib>Rathore, Mangal S.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Agricultural Science Collection</collection><collection>ProQuest_Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Agriculture Science Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>ProQuest Biological Science Journals</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Journal of plant growth regulation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Haque, Md Intesaful</au><au>Siddiqui, Shahrukh A.</au><au>Jha, B.</au><au>Rathore, Mangal S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Interactive Effects of Abiotic Stress and Elevated CO2 on Physio-Chemical and Photosynthetic Responses in Suaeda Species</atitle><jtitle>Journal of plant growth regulation</jtitle><stitle>J Plant Growth Regul</stitle><date>2022-10-01</date><risdate>2022</risdate><volume>41</volume><issue>7</issue><spage>2930</spage><epage>2948</epage><pages>2930-2948</pages><issn>0721-7595</issn><eissn>1435-8107</eissn><abstract>Suaeda fruticosa
and
S. monoica
are important halophytes for ecological rehabilitation of saline lands. We report differential physio-chemical, photosynthetic, and chlorophyll fluorescence responses in these halophytes under 100 mM sodium chloride (NaCl), 50% strength (16.25 ppt) of seawater (SW)-imposed salinity, and 10% polyethylene glycol 6000 imposed osmotic stress at 380 (ambient) and 1200 (elevated) µmol mol
–1
CO
2
concentrations. SW salinity enhanced the growth in both species; however, compared with
S. fruticosa,
the
S. monoica
exhibited comparatively better growth and biomass accumulation under saline conditions at elevated CO
2
. Results demonstrated better photosynthetic performances of
S. monoica
under stress conditions at both levels of CO
2
, and this resulted in higher accumulation of carbon, nitrogen, sugar, and starch contents.
S. monoica
exhibited improved antenna size, electron transfer at PSII donor side, and efficient working of photosynthetic machinery at elevated CO
2
, which might be due to efficient upstream utilization of reducing power to fix the CO
2
. The δ
13
C results supported the operation of C
4
CO
2
fixation in
S. monoica
and C
3
or intermediate pathway of CO
2
fixation in
S. fruticosa
. Lower accumulation of reactive oxygen species, reduced membrane damage, lowered solute potential, and higher accumulation of proline and polyphenol contents indicated elevated CO
2
-induced abiotic stress tolerance in
Suaeda
. Higher activity of antioxidant enzymes in both species at both levels of CO
2
help plants to combat the oxidative stress. Upregulation of
NADP-dependent malic enzyme
and
NADP-dependent malate dehydrogenase
genes indicated their role in abiotic stress tolerance as well as photosynthetic carbon (C) sequestration. Operation of C
4
type CO
2
fixation in
S. monoica
and an intermediate CO
2
fixation in
S. fruticosa
could be the possible reason for the superior photosynthetic efficiency of
S. monoica
under stress conditions at elevated CO
2
.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s00344-021-10485-1</doi><tpages>19</tpages><orcidid>https://orcid.org/0000-0001-5434-822X</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0721-7595 |
ispartof | Journal of plant growth regulation, 2022-10, Vol.41 (7), p.2930-2948 |
issn | 0721-7595 1435-8107 |
language | eng |
recordid | cdi_proquest_journals_2716380149 |
source | Springer Link |
subjects | Abiotic stress Accumulation Agriculture Biomedical and Life Sciences Carbon dioxide Carbon dioxide fixation Chemical analysis Chlorophyll Damage accumulation Electron transfer Fixation Halophytes Life Sciences Malate dehydrogenase Malic enzyme Osmotic stress Oxidative stress Photosynthesis Photosystem II Plant Anatomy/Development Plant Physiology Plant Sciences Polyethylene glycol Reactive oxygen species Rehabilitation Salinity Salinity effects Saprolegnia monoica Seawater Sodium chloride Suaeda Water analysis |
title | Interactive Effects of Abiotic Stress and Elevated CO2 on Physio-Chemical and Photosynthetic Responses in Suaeda Species |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T13%3A11%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Interactive%20Effects%20of%20Abiotic%20Stress%20and%20Elevated%20CO2%20on%20Physio-Chemical%20and%20Photosynthetic%20Responses%20in%20Suaeda%20Species&rft.jtitle=Journal%20of%20plant%20growth%20regulation&rft.au=Haque,%20Md%20Intesaful&rft.date=2022-10-01&rft.volume=41&rft.issue=7&rft.spage=2930&rft.epage=2948&rft.pages=2930-2948&rft.issn=0721-7595&rft.eissn=1435-8107&rft_id=info:doi/10.1007/s00344-021-10485-1&rft_dat=%3Cproquest_cross%3E2716380149%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c319t-f814074aba3303e46d21f987df1f5f5e0c507f339f98aa9ef8a67030be205d5b3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2716380149&rft_id=info:pmid/&rfr_iscdi=true |