Loading…
Effects of Artificial River Water on PEM Water Electrolysis Performance
Hydrogen, a clean and renewable energy source, is a promising substitute for fossil fuels. Electricity-driven water electrolysis is an attractive pathway for clean hydrogen production. Accordingly, the development of electrolysis cells has drawn researchers’ attention to capital costs related to nob...
Saved in:
Published in: | Catalysts 2022-09, Vol.12 (9), p.934 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c343t-26dbca801fce2a3613cd39fc2b00a0b85d6abdaaaea38c94391bed3d01945143 |
---|---|
cites | cdi_FETCH-LOGICAL-c343t-26dbca801fce2a3613cd39fc2b00a0b85d6abdaaaea38c94391bed3d01945143 |
container_end_page | |
container_issue | 9 |
container_start_page | 934 |
container_title | Catalysts |
container_volume | 12 |
creator | Yoshimura, Ryoya Wai, SoeHtet Ota, Yasuyuki Nishioka, Kensuke Suzuki, Yoshihiro |
description | Hydrogen, a clean and renewable energy source, is a promising substitute for fossil fuels. Electricity-driven water electrolysis is an attractive pathway for clean hydrogen production. Accordingly, the development of electrolysis cells has drawn researchers’ attention to capital costs related to noble catalyst reduction and membrane degradation by the contaminations. In the literature, polymer electrolyte membranes (PEMs) have been studied on single cations contamination. In this study, we investigated the performance of a PEM on monovalent and divalent cation contamination by feed water. Artificial river water, called soft water, was used to analyze the effect of impurities on the PEM. The results demonstrated that the operating voltage drastically increased and induced cell failure with increasing Mg2+ and Ca2+ concentrations; however, it did not increase for Na+ and K+ after increase in voltage. Therefore, divalent cations have a stronger affinity than monovalent cations to degrade PEM and should be effectively excluded from the feed water. |
doi_str_mv | 10.3390/catal12090934 |
format | article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2716510742</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A745273854</galeid><sourcerecordid>A745273854</sourcerecordid><originalsourceid>FETCH-LOGICAL-c343t-26dbca801fce2a3613cd39fc2b00a0b85d6abdaaaea38c94391bed3d01945143</originalsourceid><addsrcrecordid>eNpVUE1LAzEQDaJgqT16X_C8NclkP3IsZa1CxSIFj8tsNpGU7aYmqdB_b0o96AzMF--9gUfIPaNzAEkfFUYcGKeSShBXZMJpBbkAIa7_zLdkFsKOppAMalZMyKoxRqsYMmeyhY_WWGVxyN7tt_bZB8ZU3ZhtmtffpRkS2rvhFGzINtob5_c4Kn1HbgwOQc9--5Rsn5rt8jlfv61elot1rkBAzHnZdwpryozSHKFkoHqQRvGOUqRdXfQldj0iaoRaSQGSdbqHnjIpCiZgSh4usgfvvo46xHbnjn5MH1tesbJgtBI8oeYX1CcOurWjcdGjStnrvVVu1Mam-6ISBa-gLs6y-YWgvAvBa9MevN2jP7WMtmd723_2wg9qI20C</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2716510742</pqid></control><display><type>article</type><title>Effects of Artificial River Water on PEM Water Electrolysis Performance</title><source>Publicly Available Content (ProQuest)</source><creator>Yoshimura, Ryoya ; Wai, SoeHtet ; Ota, Yasuyuki ; Nishioka, Kensuke ; Suzuki, Yoshihiro</creator><creatorcontrib>Yoshimura, Ryoya ; Wai, SoeHtet ; Ota, Yasuyuki ; Nishioka, Kensuke ; Suzuki, Yoshihiro</creatorcontrib><description>Hydrogen, a clean and renewable energy source, is a promising substitute for fossil fuels. Electricity-driven water electrolysis is an attractive pathway for clean hydrogen production. Accordingly, the development of electrolysis cells has drawn researchers’ attention to capital costs related to noble catalyst reduction and membrane degradation by the contaminations. In the literature, polymer electrolyte membranes (PEMs) have been studied on single cations contamination. In this study, we investigated the performance of a PEM on monovalent and divalent cation contamination by feed water. Artificial river water, called soft water, was used to analyze the effect of impurities on the PEM. The results demonstrated that the operating voltage drastically increased and induced cell failure with increasing Mg2+ and Ca2+ concentrations; however, it did not increase for Na+ and K+ after increase in voltage. Therefore, divalent cations have a stronger affinity than monovalent cations to degrade PEM and should be effectively excluded from the feed water.</description><identifier>ISSN: 2073-4344</identifier><identifier>EISSN: 2073-4344</identifier><identifier>DOI: 10.3390/catal12090934</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Alternative energy sources ; Analysis ; Calcium ions ; Capital costs ; Catalysts ; Chemical reactions ; Clean energy ; Contamination ; Divalent cations ; Electric potential ; Electrolysis ; Electrolytes ; Electrolytic cells ; Energy ; Force and energy ; Fossil fuels ; Green technology ; Hydrogen ; Hydrogen as fuel ; Hydrogen production ; Membranes ; Osmosis ; Renewable energy sources ; Sodium ; Voltage ; Water supply</subject><ispartof>Catalysts, 2022-09, Vol.12 (9), p.934</ispartof><rights>COPYRIGHT 2022 MDPI AG</rights><rights>2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c343t-26dbca801fce2a3613cd39fc2b00a0b85d6abdaaaea38c94391bed3d01945143</citedby><cites>FETCH-LOGICAL-c343t-26dbca801fce2a3613cd39fc2b00a0b85d6abdaaaea38c94391bed3d01945143</cites><orcidid>0000-0002-8704-3171 ; 0000-0002-3907-7406 ; 0000-0002-1148-5379</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2716510742/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2716510742?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,25731,27901,27902,36989,44566,75096</link.rule.ids></links><search><creatorcontrib>Yoshimura, Ryoya</creatorcontrib><creatorcontrib>Wai, SoeHtet</creatorcontrib><creatorcontrib>Ota, Yasuyuki</creatorcontrib><creatorcontrib>Nishioka, Kensuke</creatorcontrib><creatorcontrib>Suzuki, Yoshihiro</creatorcontrib><title>Effects of Artificial River Water on PEM Water Electrolysis Performance</title><title>Catalysts</title><description>Hydrogen, a clean and renewable energy source, is a promising substitute for fossil fuels. Electricity-driven water electrolysis is an attractive pathway for clean hydrogen production. Accordingly, the development of electrolysis cells has drawn researchers’ attention to capital costs related to noble catalyst reduction and membrane degradation by the contaminations. In the literature, polymer electrolyte membranes (PEMs) have been studied on single cations contamination. In this study, we investigated the performance of a PEM on monovalent and divalent cation contamination by feed water. Artificial river water, called soft water, was used to analyze the effect of impurities on the PEM. The results demonstrated that the operating voltage drastically increased and induced cell failure with increasing Mg2+ and Ca2+ concentrations; however, it did not increase for Na+ and K+ after increase in voltage. Therefore, divalent cations have a stronger affinity than monovalent cations to degrade PEM and should be effectively excluded from the feed water.</description><subject>Alternative energy sources</subject><subject>Analysis</subject><subject>Calcium ions</subject><subject>Capital costs</subject><subject>Catalysts</subject><subject>Chemical reactions</subject><subject>Clean energy</subject><subject>Contamination</subject><subject>Divalent cations</subject><subject>Electric potential</subject><subject>Electrolysis</subject><subject>Electrolytes</subject><subject>Electrolytic cells</subject><subject>Energy</subject><subject>Force and energy</subject><subject>Fossil fuels</subject><subject>Green technology</subject><subject>Hydrogen</subject><subject>Hydrogen as fuel</subject><subject>Hydrogen production</subject><subject>Membranes</subject><subject>Osmosis</subject><subject>Renewable energy sources</subject><subject>Sodium</subject><subject>Voltage</subject><subject>Water supply</subject><issn>2073-4344</issn><issn>2073-4344</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNpVUE1LAzEQDaJgqT16X_C8NclkP3IsZa1CxSIFj8tsNpGU7aYmqdB_b0o96AzMF--9gUfIPaNzAEkfFUYcGKeSShBXZMJpBbkAIa7_zLdkFsKOppAMalZMyKoxRqsYMmeyhY_WWGVxyN7tt_bZB8ZU3ZhtmtffpRkS2rvhFGzINtob5_c4Kn1HbgwOQc9--5Rsn5rt8jlfv61elot1rkBAzHnZdwpryozSHKFkoHqQRvGOUqRdXfQldj0iaoRaSQGSdbqHnjIpCiZgSh4usgfvvo46xHbnjn5MH1tesbJgtBI8oeYX1CcOurWjcdGjStnrvVVu1Mam-6ISBa-gLs6y-YWgvAvBa9MevN2jP7WMtmd723_2wg9qI20C</recordid><startdate>20220901</startdate><enddate>20220901</enddate><creator>Yoshimura, Ryoya</creator><creator>Wai, SoeHtet</creator><creator>Ota, Yasuyuki</creator><creator>Nishioka, Kensuke</creator><creator>Suzuki, Yoshihiro</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>PDBOC</scope><scope>PHGZM</scope><scope>PHGZT</scope><scope>PIMPY</scope><scope>PKEHL</scope><scope>PQEST</scope><scope>PQGLB</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><orcidid>https://orcid.org/0000-0002-8704-3171</orcidid><orcidid>https://orcid.org/0000-0002-3907-7406</orcidid><orcidid>https://orcid.org/0000-0002-1148-5379</orcidid></search><sort><creationdate>20220901</creationdate><title>Effects of Artificial River Water on PEM Water Electrolysis Performance</title><author>Yoshimura, Ryoya ; Wai, SoeHtet ; Ota, Yasuyuki ; Nishioka, Kensuke ; Suzuki, Yoshihiro</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c343t-26dbca801fce2a3613cd39fc2b00a0b85d6abdaaaea38c94391bed3d01945143</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Alternative energy sources</topic><topic>Analysis</topic><topic>Calcium ions</topic><topic>Capital costs</topic><topic>Catalysts</topic><topic>Chemical reactions</topic><topic>Clean energy</topic><topic>Contamination</topic><topic>Divalent cations</topic><topic>Electric potential</topic><topic>Electrolysis</topic><topic>Electrolytes</topic><topic>Electrolytic cells</topic><topic>Energy</topic><topic>Force and energy</topic><topic>Fossil fuels</topic><topic>Green technology</topic><topic>Hydrogen</topic><topic>Hydrogen as fuel</topic><topic>Hydrogen production</topic><topic>Membranes</topic><topic>Osmosis</topic><topic>Renewable energy sources</topic><topic>Sodium</topic><topic>Voltage</topic><topic>Water supply</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yoshimura, Ryoya</creatorcontrib><creatorcontrib>Wai, SoeHtet</creatorcontrib><creatorcontrib>Ota, Yasuyuki</creatorcontrib><creatorcontrib>Nishioka, Kensuke</creatorcontrib><creatorcontrib>Suzuki, Yoshihiro</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Materials Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest Central (New)</collection><collection>ProQuest One Academic (New)</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Middle East (New)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Applied & Life Sciences</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Catalysts</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yoshimura, Ryoya</au><au>Wai, SoeHtet</au><au>Ota, Yasuyuki</au><au>Nishioka, Kensuke</au><au>Suzuki, Yoshihiro</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Effects of Artificial River Water on PEM Water Electrolysis Performance</atitle><jtitle>Catalysts</jtitle><date>2022-09-01</date><risdate>2022</risdate><volume>12</volume><issue>9</issue><spage>934</spage><pages>934-</pages><issn>2073-4344</issn><eissn>2073-4344</eissn><abstract>Hydrogen, a clean and renewable energy source, is a promising substitute for fossil fuels. Electricity-driven water electrolysis is an attractive pathway for clean hydrogen production. Accordingly, the development of electrolysis cells has drawn researchers’ attention to capital costs related to noble catalyst reduction and membrane degradation by the contaminations. In the literature, polymer electrolyte membranes (PEMs) have been studied on single cations contamination. In this study, we investigated the performance of a PEM on monovalent and divalent cation contamination by feed water. Artificial river water, called soft water, was used to analyze the effect of impurities on the PEM. The results demonstrated that the operating voltage drastically increased and induced cell failure with increasing Mg2+ and Ca2+ concentrations; however, it did not increase for Na+ and K+ after increase in voltage. Therefore, divalent cations have a stronger affinity than monovalent cations to degrade PEM and should be effectively excluded from the feed water.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/catal12090934</doi><orcidid>https://orcid.org/0000-0002-8704-3171</orcidid><orcidid>https://orcid.org/0000-0002-3907-7406</orcidid><orcidid>https://orcid.org/0000-0002-1148-5379</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2073-4344 |
ispartof | Catalysts, 2022-09, Vol.12 (9), p.934 |
issn | 2073-4344 2073-4344 |
language | eng |
recordid | cdi_proquest_journals_2716510742 |
source | Publicly Available Content (ProQuest) |
subjects | Alternative energy sources Analysis Calcium ions Capital costs Catalysts Chemical reactions Clean energy Contamination Divalent cations Electric potential Electrolysis Electrolytes Electrolytic cells Energy Force and energy Fossil fuels Green technology Hydrogen Hydrogen as fuel Hydrogen production Membranes Osmosis Renewable energy sources Sodium Voltage Water supply |
title | Effects of Artificial River Water on PEM Water Electrolysis Performance |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-24T03%3A32%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Effects%20of%20Artificial%20River%20Water%20on%20PEM%20Water%20Electrolysis%20Performance&rft.jtitle=Catalysts&rft.au=Yoshimura,%20Ryoya&rft.date=2022-09-01&rft.volume=12&rft.issue=9&rft.spage=934&rft.pages=934-&rft.issn=2073-4344&rft.eissn=2073-4344&rft_id=info:doi/10.3390/catal12090934&rft_dat=%3Cgale_proqu%3EA745273854%3C/gale_proqu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c343t-26dbca801fce2a3613cd39fc2b00a0b85d6abdaaaea38c94391bed3d01945143%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2716510742&rft_id=info:pmid/&rft_galeid=A745273854&rfr_iscdi=true |