Loading…

Surface Structuring and Thin Film Coating through Additive Concept Using Laser Induced Plasma of Mg Alloy: A Comparison between the Presence and Absence of Transverse Magnetic Field (TMF)

In the present study, the influence of a 1.1 tesla Transverse Magnetic Field (TMF) on Laser-Induced Breakdown Spectroscopy (LIBS) of Mg-alloy plasma has been explored. The Mg plasma was produced using an Nd: YAG laser (1064 nm, 10 ns) at an intensity of 2 GW/cm2. Inert gases of Ar, Ne, and He were f...

Full description

Saved in:
Bibliographic Details
Published in:Coatings (Basel) 2022-09, Vol.12 (9), p.1316
Main Authors: Dawood, Asadullah, Bashir, Shazia, Ahmed, Naveed, Hayat, Asma, AlFaify, Abdullah, Sarfraz, Syed, Abbasi, Shahab, Ur Rehman, Ateekh
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In the present study, the influence of a 1.1 tesla Transverse Magnetic Field (TMF) on Laser-Induced Breakdown Spectroscopy (LIBS) of Mg-alloy plasma has been explored. The Mg plasma was produced using an Nd: YAG laser (1064 nm, 10 ns) at an intensity of 2 GW/cm2. Inert gases of Ar, Ne, and He were filled as environmental gases at pressures ranging from 1 to 100 Torr. Optical emission spectra from laser-produced plasma were detected with the help of a spectrometer, and plasma parameters such as excitation temperature (Texc) and electron number density (ne) were evaluated. Enhancement in the Mg plasma’s Texc and ne in the presence of TMF was noticed under all experimental conditions, including different ambient gases with varying pressures and time delays (0.42 µs–9.58 µs). Plasma confinement by applied TMF was analytically evaluated through thermal beta (βt) values, which were
ISSN:2079-6412
2079-6412
DOI:10.3390/coatings12091316