Loading…
Attentive SOLO for Sonar Target Segmentation
Imaging sonar systems play an important role in underwater target detection and location. Due to the influence of reverberation noise on imaging sonar systems, the task of sonar target segmentation is a challenging problem. In order to segment different types of targets in sonar images accurately, w...
Saved in:
Published in: | Electronics (Basel) 2022-09, Vol.11 (18), p.2904 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c311t-794e50a1391ca3636c4be58cefe4571d81c7276e102f3c884a733919e503b8323 |
container_end_page | |
container_issue | 18 |
container_start_page | 2904 |
container_title | Electronics (Basel) |
container_volume | 11 |
creator | Huang, Honghe Zuo, Zhen Sun, Bei Wu, Peng Zhang, Jiaju |
description | Imaging sonar systems play an important role in underwater target detection and location. Due to the influence of reverberation noise on imaging sonar systems, the task of sonar target segmentation is a challenging problem. In order to segment different types of targets in sonar images accurately, we proposed the gated fusion-pyramid segmentation attention (GF-PSA) module. Specifically, inspired by gated full fusion, we improved the pyramid segmentation attention (PSA) module by using gated fusion to reduce the noise interference during feature fusion and improve segmentation accuracy. Then, we improved the SOLOv2 (Segmenting Objects by Locations v2) algorithm with the proposed GF-PSA and named the improved algorithm Attentive SOLO. In addition, we constructed a sonar target segmentation dataset, named STSD, which contains 4000 real sonar images, covering eight object categories with a total of 7077 target annotations. The experimental results show that the segmentation accuracy of Attentive SOLO on STSD is as high as 74.1%, which is 3.7% higher than that of SOLOv2. |
doi_str_mv | 10.3390/electronics11182904 |
format | article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2716520967</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A745603439</galeid><sourcerecordid>A745603439</sourcerecordid><originalsourceid>FETCH-LOGICAL-c311t-794e50a1391ca3636c4be58cefe4571d81c7276e102f3c884a733919e503b8323</originalsourceid><addsrcrecordid>eNptkE1LAzEQhoMoWLS_wMuCV7dmMtnN5liKX1DoofUc0nS2pLRJzaaC_95IPXhw5jDD8LwzzMvYHfAJouaPtCeXUwzeDQDQCc3lBRsJrnSthRaXf_prNh6GHS-hATvkI_YwzZlC9p9ULRfzRdXHVC1jsKla2bSlXC1peyiAzT6GW3bV2_1A4996w96fn1az13q-eHmbTee1Q4BcKy2p4RZQg7PYYuvkmprOUU-yUbDpwCmhWgIuenRdJ60qj4AuIlx3KPCG3Z_3HlP8ONGQzS6eUignjVDQNoLrVhVqcqa2dk_Ghz7mZF3JDR28i4F6X-ZTJZuWo0RdBHgWuBSHIVFvjskfbPoywM2PleYfK_Eb_-Bm_g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2716520967</pqid></control><display><type>article</type><title>Attentive SOLO for Sonar Target Segmentation</title><source>ProQuest - Publicly Available Content Database</source><creator>Huang, Honghe ; Zuo, Zhen ; Sun, Bei ; Wu, Peng ; Zhang, Jiaju</creator><creatorcontrib>Huang, Honghe ; Zuo, Zhen ; Sun, Bei ; Wu, Peng ; Zhang, Jiaju</creatorcontrib><description>Imaging sonar systems play an important role in underwater target detection and location. Due to the influence of reverberation noise on imaging sonar systems, the task of sonar target segmentation is a challenging problem. In order to segment different types of targets in sonar images accurately, we proposed the gated fusion-pyramid segmentation attention (GF-PSA) module. Specifically, inspired by gated full fusion, we improved the pyramid segmentation attention (PSA) module by using gated fusion to reduce the noise interference during feature fusion and improve segmentation accuracy. Then, we improved the SOLOv2 (Segmenting Objects by Locations v2) algorithm with the proposed GF-PSA and named the improved algorithm Attentive SOLO. In addition, we constructed a sonar target segmentation dataset, named STSD, which contains 4000 real sonar images, covering eight object categories with a total of 7077 target annotations. The experimental results show that the segmentation accuracy of Attentive SOLO on STSD is as high as 74.1%, which is 3.7% higher than that of SOLOv2.</description><identifier>ISSN: 2079-9292</identifier><identifier>EISSN: 2079-9292</identifier><identifier>DOI: 10.3390/electronics11182904</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Accuracy ; Algorithms ; Annotations ; Datasets ; Deep learning ; Image processing ; Image segmentation ; Methods ; Modules ; Noise reduction ; Semantics ; Signal processing ; Sonar ; Sonar systems ; Sound waves ; Target detection ; Target recognition ; Teaching methods</subject><ispartof>Electronics (Basel), 2022-09, Vol.11 (18), p.2904</ispartof><rights>COPYRIGHT 2022 MDPI AG</rights><rights>2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c311t-794e50a1391ca3636c4be58cefe4571d81c7276e102f3c884a733919e503b8323</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2716520967/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2716520967?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,25753,27924,27925,37012,44590,75126</link.rule.ids></links><search><creatorcontrib>Huang, Honghe</creatorcontrib><creatorcontrib>Zuo, Zhen</creatorcontrib><creatorcontrib>Sun, Bei</creatorcontrib><creatorcontrib>Wu, Peng</creatorcontrib><creatorcontrib>Zhang, Jiaju</creatorcontrib><title>Attentive SOLO for Sonar Target Segmentation</title><title>Electronics (Basel)</title><description>Imaging sonar systems play an important role in underwater target detection and location. Due to the influence of reverberation noise on imaging sonar systems, the task of sonar target segmentation is a challenging problem. In order to segment different types of targets in sonar images accurately, we proposed the gated fusion-pyramid segmentation attention (GF-PSA) module. Specifically, inspired by gated full fusion, we improved the pyramid segmentation attention (PSA) module by using gated fusion to reduce the noise interference during feature fusion and improve segmentation accuracy. Then, we improved the SOLOv2 (Segmenting Objects by Locations v2) algorithm with the proposed GF-PSA and named the improved algorithm Attentive SOLO. In addition, we constructed a sonar target segmentation dataset, named STSD, which contains 4000 real sonar images, covering eight object categories with a total of 7077 target annotations. The experimental results show that the segmentation accuracy of Attentive SOLO on STSD is as high as 74.1%, which is 3.7% higher than that of SOLOv2.</description><subject>Accuracy</subject><subject>Algorithms</subject><subject>Annotations</subject><subject>Datasets</subject><subject>Deep learning</subject><subject>Image processing</subject><subject>Image segmentation</subject><subject>Methods</subject><subject>Modules</subject><subject>Noise reduction</subject><subject>Semantics</subject><subject>Signal processing</subject><subject>Sonar</subject><subject>Sonar systems</subject><subject>Sound waves</subject><subject>Target detection</subject><subject>Target recognition</subject><subject>Teaching methods</subject><issn>2079-9292</issn><issn>2079-9292</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNptkE1LAzEQhoMoWLS_wMuCV7dmMtnN5liKX1DoofUc0nS2pLRJzaaC_95IPXhw5jDD8LwzzMvYHfAJouaPtCeXUwzeDQDQCc3lBRsJrnSthRaXf_prNh6GHS-hATvkI_YwzZlC9p9ULRfzRdXHVC1jsKla2bSlXC1peyiAzT6GW3bV2_1A4996w96fn1az13q-eHmbTee1Q4BcKy2p4RZQg7PYYuvkmprOUU-yUbDpwCmhWgIuenRdJ60qj4AuIlx3KPCG3Z_3HlP8ONGQzS6eUignjVDQNoLrVhVqcqa2dk_Ghz7mZF3JDR28i4F6X-ZTJZuWo0RdBHgWuBSHIVFvjskfbPoywM2PleYfK_Eb_-Bm_g</recordid><startdate>20220901</startdate><enddate>20220901</enddate><creator>Huang, Honghe</creator><creator>Zuo, Zhen</creator><creator>Sun, Bei</creator><creator>Wu, Peng</creator><creator>Zhang, Jiaju</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L7M</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope></search><sort><creationdate>20220901</creationdate><title>Attentive SOLO for Sonar Target Segmentation</title><author>Huang, Honghe ; Zuo, Zhen ; Sun, Bei ; Wu, Peng ; Zhang, Jiaju</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c311t-794e50a1391ca3636c4be58cefe4571d81c7276e102f3c884a733919e503b8323</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Accuracy</topic><topic>Algorithms</topic><topic>Annotations</topic><topic>Datasets</topic><topic>Deep learning</topic><topic>Image processing</topic><topic>Image segmentation</topic><topic>Methods</topic><topic>Modules</topic><topic>Noise reduction</topic><topic>Semantics</topic><topic>Signal processing</topic><topic>Sonar</topic><topic>Sonar systems</topic><topic>Sound waves</topic><topic>Target detection</topic><topic>Target recognition</topic><topic>Teaching methods</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Huang, Honghe</creatorcontrib><creatorcontrib>Zuo, Zhen</creatorcontrib><creatorcontrib>Sun, Bei</creatorcontrib><creatorcontrib>Wu, Peng</creatorcontrib><creatorcontrib>Zhang, Jiaju</creatorcontrib><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest advanced technologies & aerospace journals</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest - Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Electronics (Basel)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Huang, Honghe</au><au>Zuo, Zhen</au><au>Sun, Bei</au><au>Wu, Peng</au><au>Zhang, Jiaju</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Attentive SOLO for Sonar Target Segmentation</atitle><jtitle>Electronics (Basel)</jtitle><date>2022-09-01</date><risdate>2022</risdate><volume>11</volume><issue>18</issue><spage>2904</spage><pages>2904-</pages><issn>2079-9292</issn><eissn>2079-9292</eissn><abstract>Imaging sonar systems play an important role in underwater target detection and location. Due to the influence of reverberation noise on imaging sonar systems, the task of sonar target segmentation is a challenging problem. In order to segment different types of targets in sonar images accurately, we proposed the gated fusion-pyramid segmentation attention (GF-PSA) module. Specifically, inspired by gated full fusion, we improved the pyramid segmentation attention (PSA) module by using gated fusion to reduce the noise interference during feature fusion and improve segmentation accuracy. Then, we improved the SOLOv2 (Segmenting Objects by Locations v2) algorithm with the proposed GF-PSA and named the improved algorithm Attentive SOLO. In addition, we constructed a sonar target segmentation dataset, named STSD, which contains 4000 real sonar images, covering eight object categories with a total of 7077 target annotations. The experimental results show that the segmentation accuracy of Attentive SOLO on STSD is as high as 74.1%, which is 3.7% higher than that of SOLOv2.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/electronics11182904</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2079-9292 |
ispartof | Electronics (Basel), 2022-09, Vol.11 (18), p.2904 |
issn | 2079-9292 2079-9292 |
language | eng |
recordid | cdi_proquest_journals_2716520967 |
source | ProQuest - Publicly Available Content Database |
subjects | Accuracy Algorithms Annotations Datasets Deep learning Image processing Image segmentation Methods Modules Noise reduction Semantics Signal processing Sonar Sonar systems Sound waves Target detection Target recognition Teaching methods |
title | Attentive SOLO for Sonar Target Segmentation |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T09%3A16%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Attentive%20SOLO%20for%20Sonar%20Target%20Segmentation&rft.jtitle=Electronics%20(Basel)&rft.au=Huang,%20Honghe&rft.date=2022-09-01&rft.volume=11&rft.issue=18&rft.spage=2904&rft.pages=2904-&rft.issn=2079-9292&rft.eissn=2079-9292&rft_id=info:doi/10.3390/electronics11182904&rft_dat=%3Cgale_proqu%3EA745603439%3C/gale_proqu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c311t-794e50a1391ca3636c4be58cefe4571d81c7276e102f3c884a733919e503b8323%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2716520967&rft_id=info:pmid/&rft_galeid=A745603439&rfr_iscdi=true |