Loading…

Attentive SOLO for Sonar Target Segmentation

Imaging sonar systems play an important role in underwater target detection and location. Due to the influence of reverberation noise on imaging sonar systems, the task of sonar target segmentation is a challenging problem. In order to segment different types of targets in sonar images accurately, w...

Full description

Saved in:
Bibliographic Details
Published in:Electronics (Basel) 2022-09, Vol.11 (18), p.2904
Main Authors: Huang, Honghe, Zuo, Zhen, Sun, Bei, Wu, Peng, Zhang, Jiaju
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c311t-794e50a1391ca3636c4be58cefe4571d81c7276e102f3c884a733919e503b8323
container_end_page
container_issue 18
container_start_page 2904
container_title Electronics (Basel)
container_volume 11
creator Huang, Honghe
Zuo, Zhen
Sun, Bei
Wu, Peng
Zhang, Jiaju
description Imaging sonar systems play an important role in underwater target detection and location. Due to the influence of reverberation noise on imaging sonar systems, the task of sonar target segmentation is a challenging problem. In order to segment different types of targets in sonar images accurately, we proposed the gated fusion-pyramid segmentation attention (GF-PSA) module. Specifically, inspired by gated full fusion, we improved the pyramid segmentation attention (PSA) module by using gated fusion to reduce the noise interference during feature fusion and improve segmentation accuracy. Then, we improved the SOLOv2 (Segmenting Objects by Locations v2) algorithm with the proposed GF-PSA and named the improved algorithm Attentive SOLO. In addition, we constructed a sonar target segmentation dataset, named STSD, which contains 4000 real sonar images, covering eight object categories with a total of 7077 target annotations. The experimental results show that the segmentation accuracy of Attentive SOLO on STSD is as high as 74.1%, which is 3.7% higher than that of SOLOv2.
doi_str_mv 10.3390/electronics11182904
format article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2716520967</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A745603439</galeid><sourcerecordid>A745603439</sourcerecordid><originalsourceid>FETCH-LOGICAL-c311t-794e50a1391ca3636c4be58cefe4571d81c7276e102f3c884a733919e503b8323</originalsourceid><addsrcrecordid>eNptkE1LAzEQhoMoWLS_wMuCV7dmMtnN5liKX1DoofUc0nS2pLRJzaaC_95IPXhw5jDD8LwzzMvYHfAJouaPtCeXUwzeDQDQCc3lBRsJrnSthRaXf_prNh6GHS-hATvkI_YwzZlC9p9ULRfzRdXHVC1jsKla2bSlXC1peyiAzT6GW3bV2_1A4996w96fn1az13q-eHmbTee1Q4BcKy2p4RZQg7PYYuvkmprOUU-yUbDpwCmhWgIuenRdJ60qj4AuIlx3KPCG3Z_3HlP8ONGQzS6eUignjVDQNoLrVhVqcqa2dk_Ghz7mZF3JDR28i4F6X-ZTJZuWo0RdBHgWuBSHIVFvjskfbPoywM2PleYfK_Eb_-Bm_g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2716520967</pqid></control><display><type>article</type><title>Attentive SOLO for Sonar Target Segmentation</title><source>ProQuest - Publicly Available Content Database</source><creator>Huang, Honghe ; Zuo, Zhen ; Sun, Bei ; Wu, Peng ; Zhang, Jiaju</creator><creatorcontrib>Huang, Honghe ; Zuo, Zhen ; Sun, Bei ; Wu, Peng ; Zhang, Jiaju</creatorcontrib><description>Imaging sonar systems play an important role in underwater target detection and location. Due to the influence of reverberation noise on imaging sonar systems, the task of sonar target segmentation is a challenging problem. In order to segment different types of targets in sonar images accurately, we proposed the gated fusion-pyramid segmentation attention (GF-PSA) module. Specifically, inspired by gated full fusion, we improved the pyramid segmentation attention (PSA) module by using gated fusion to reduce the noise interference during feature fusion and improve segmentation accuracy. Then, we improved the SOLOv2 (Segmenting Objects by Locations v2) algorithm with the proposed GF-PSA and named the improved algorithm Attentive SOLO. In addition, we constructed a sonar target segmentation dataset, named STSD, which contains 4000 real sonar images, covering eight object categories with a total of 7077 target annotations. The experimental results show that the segmentation accuracy of Attentive SOLO on STSD is as high as 74.1%, which is 3.7% higher than that of SOLOv2.</description><identifier>ISSN: 2079-9292</identifier><identifier>EISSN: 2079-9292</identifier><identifier>DOI: 10.3390/electronics11182904</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Accuracy ; Algorithms ; Annotations ; Datasets ; Deep learning ; Image processing ; Image segmentation ; Methods ; Modules ; Noise reduction ; Semantics ; Signal processing ; Sonar ; Sonar systems ; Sound waves ; Target detection ; Target recognition ; Teaching methods</subject><ispartof>Electronics (Basel), 2022-09, Vol.11 (18), p.2904</ispartof><rights>COPYRIGHT 2022 MDPI AG</rights><rights>2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c311t-794e50a1391ca3636c4be58cefe4571d81c7276e102f3c884a733919e503b8323</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2716520967/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2716520967?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,25753,27924,27925,37012,44590,75126</link.rule.ids></links><search><creatorcontrib>Huang, Honghe</creatorcontrib><creatorcontrib>Zuo, Zhen</creatorcontrib><creatorcontrib>Sun, Bei</creatorcontrib><creatorcontrib>Wu, Peng</creatorcontrib><creatorcontrib>Zhang, Jiaju</creatorcontrib><title>Attentive SOLO for Sonar Target Segmentation</title><title>Electronics (Basel)</title><description>Imaging sonar systems play an important role in underwater target detection and location. Due to the influence of reverberation noise on imaging sonar systems, the task of sonar target segmentation is a challenging problem. In order to segment different types of targets in sonar images accurately, we proposed the gated fusion-pyramid segmentation attention (GF-PSA) module. Specifically, inspired by gated full fusion, we improved the pyramid segmentation attention (PSA) module by using gated fusion to reduce the noise interference during feature fusion and improve segmentation accuracy. Then, we improved the SOLOv2 (Segmenting Objects by Locations v2) algorithm with the proposed GF-PSA and named the improved algorithm Attentive SOLO. In addition, we constructed a sonar target segmentation dataset, named STSD, which contains 4000 real sonar images, covering eight object categories with a total of 7077 target annotations. The experimental results show that the segmentation accuracy of Attentive SOLO on STSD is as high as 74.1%, which is 3.7% higher than that of SOLOv2.</description><subject>Accuracy</subject><subject>Algorithms</subject><subject>Annotations</subject><subject>Datasets</subject><subject>Deep learning</subject><subject>Image processing</subject><subject>Image segmentation</subject><subject>Methods</subject><subject>Modules</subject><subject>Noise reduction</subject><subject>Semantics</subject><subject>Signal processing</subject><subject>Sonar</subject><subject>Sonar systems</subject><subject>Sound waves</subject><subject>Target detection</subject><subject>Target recognition</subject><subject>Teaching methods</subject><issn>2079-9292</issn><issn>2079-9292</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNptkE1LAzEQhoMoWLS_wMuCV7dmMtnN5liKX1DoofUc0nS2pLRJzaaC_95IPXhw5jDD8LwzzMvYHfAJouaPtCeXUwzeDQDQCc3lBRsJrnSthRaXf_prNh6GHS-hATvkI_YwzZlC9p9ULRfzRdXHVC1jsKla2bSlXC1peyiAzT6GW3bV2_1A4996w96fn1az13q-eHmbTee1Q4BcKy2p4RZQg7PYYuvkmprOUU-yUbDpwCmhWgIuenRdJ60qj4AuIlx3KPCG3Z_3HlP8ONGQzS6eUignjVDQNoLrVhVqcqa2dk_Ghz7mZF3JDR28i4F6X-ZTJZuWo0RdBHgWuBSHIVFvjskfbPoywM2PleYfK_Eb_-Bm_g</recordid><startdate>20220901</startdate><enddate>20220901</enddate><creator>Huang, Honghe</creator><creator>Zuo, Zhen</creator><creator>Sun, Bei</creator><creator>Wu, Peng</creator><creator>Zhang, Jiaju</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L7M</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope></search><sort><creationdate>20220901</creationdate><title>Attentive SOLO for Sonar Target Segmentation</title><author>Huang, Honghe ; Zuo, Zhen ; Sun, Bei ; Wu, Peng ; Zhang, Jiaju</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c311t-794e50a1391ca3636c4be58cefe4571d81c7276e102f3c884a733919e503b8323</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Accuracy</topic><topic>Algorithms</topic><topic>Annotations</topic><topic>Datasets</topic><topic>Deep learning</topic><topic>Image processing</topic><topic>Image segmentation</topic><topic>Methods</topic><topic>Modules</topic><topic>Noise reduction</topic><topic>Semantics</topic><topic>Signal processing</topic><topic>Sonar</topic><topic>Sonar systems</topic><topic>Sound waves</topic><topic>Target detection</topic><topic>Target recognition</topic><topic>Teaching methods</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Huang, Honghe</creatorcontrib><creatorcontrib>Zuo, Zhen</creatorcontrib><creatorcontrib>Sun, Bei</creatorcontrib><creatorcontrib>Wu, Peng</creatorcontrib><creatorcontrib>Zhang, Jiaju</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest advanced technologies &amp; aerospace journals</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest - Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Electronics (Basel)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Huang, Honghe</au><au>Zuo, Zhen</au><au>Sun, Bei</au><au>Wu, Peng</au><au>Zhang, Jiaju</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Attentive SOLO for Sonar Target Segmentation</atitle><jtitle>Electronics (Basel)</jtitle><date>2022-09-01</date><risdate>2022</risdate><volume>11</volume><issue>18</issue><spage>2904</spage><pages>2904-</pages><issn>2079-9292</issn><eissn>2079-9292</eissn><abstract>Imaging sonar systems play an important role in underwater target detection and location. Due to the influence of reverberation noise on imaging sonar systems, the task of sonar target segmentation is a challenging problem. In order to segment different types of targets in sonar images accurately, we proposed the gated fusion-pyramid segmentation attention (GF-PSA) module. Specifically, inspired by gated full fusion, we improved the pyramid segmentation attention (PSA) module by using gated fusion to reduce the noise interference during feature fusion and improve segmentation accuracy. Then, we improved the SOLOv2 (Segmenting Objects by Locations v2) algorithm with the proposed GF-PSA and named the improved algorithm Attentive SOLO. In addition, we constructed a sonar target segmentation dataset, named STSD, which contains 4000 real sonar images, covering eight object categories with a total of 7077 target annotations. The experimental results show that the segmentation accuracy of Attentive SOLO on STSD is as high as 74.1%, which is 3.7% higher than that of SOLOv2.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/electronics11182904</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2079-9292
ispartof Electronics (Basel), 2022-09, Vol.11 (18), p.2904
issn 2079-9292
2079-9292
language eng
recordid cdi_proquest_journals_2716520967
source ProQuest - Publicly Available Content Database
subjects Accuracy
Algorithms
Annotations
Datasets
Deep learning
Image processing
Image segmentation
Methods
Modules
Noise reduction
Semantics
Signal processing
Sonar
Sonar systems
Sound waves
Target detection
Target recognition
Teaching methods
title Attentive SOLO for Sonar Target Segmentation
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T09%3A16%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Attentive%20SOLO%20for%20Sonar%20Target%20Segmentation&rft.jtitle=Electronics%20(Basel)&rft.au=Huang,%20Honghe&rft.date=2022-09-01&rft.volume=11&rft.issue=18&rft.spage=2904&rft.pages=2904-&rft.issn=2079-9292&rft.eissn=2079-9292&rft_id=info:doi/10.3390/electronics11182904&rft_dat=%3Cgale_proqu%3EA745603439%3C/gale_proqu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c311t-794e50a1391ca3636c4be58cefe4571d81c7276e102f3c884a733919e503b8323%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2716520967&rft_id=info:pmid/&rft_galeid=A745603439&rfr_iscdi=true