Loading…

Multi-Graph Convolutional Network for Fine-Grained and Personalized POI Recommendation

With the advent of the era of rapid information expansion, the massive data backlog that exists on the Internet has led to a serious information overload problem, which makes recommendation systems a crucial part of human life. In particular, the Point-Of-Interest (POI) recommendation system has bee...

Full description

Saved in:
Bibliographic Details
Published in:Electronics (Basel) 2022-09, Vol.11 (18), p.2966
Main Authors: Zhang, Suzhi, Bai, Zijian, Li, Pu, Chang, Yuanyuan
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:With the advent of the era of rapid information expansion, the massive data backlog that exists on the Internet has led to a serious information overload problem, which makes recommendation systems a crucial part of human life. In particular, the Point-Of-Interest (POI) recommendation system has been applied to many real-life scenarios, such as life services and autonomous driving. Specifically, the goal of POI recommendation is to recommend locations that match their personalized preferences to users. In existing POI recommendation methods, people tend to pay more attention to the impact of temporal and spatial factors of POI on users, which will alleviate the problems of data sparsity and cold start in POI recommendation. However, this tends to ignore the differences among individual users, and considering only temporal and spatial attributes does not support fine-grained POI recommendations. To solve this problem, we propose a new Fine-grained POI Recommendation With Multi-Graph Convolutional Network (FP-MGCN). This model focuses on the content representation of POIs, captures users’ personalized preferences using semantic information from user comments, and learns fine-grained representations of users and POIs through the relationships between content–content, content–POI, and POI–user. FP-MGCN employs multiple embedded propagation layers and adopts information propagation mechanisms to model the higher-order connections of different POI-related relations for enhanced representation. Fine-grained POI is finally recommended to users through the three types of propagation we designed: content–content information propagation, content–POI information propagation, and POI–user information propagation. We have conducted detailed experiments on two datasets, and the results show that FP-MGCN has advanced performance and can alleviate the data sparsity problem in POI recommendation tasks.
ISSN:2079-9292
2079-9292
DOI:10.3390/electronics11182966