Loading…

Deep Learning Based Simple CNN Weld Defects Classification Using Optimization Technique

Weld fault identification using X-ray pictures is a useful nondestructive testing technique. Traditionally, this job has relied on skilled human experts, while the extraction and classification of heterogeneity required their personal involvement. To overcome those challenges, various approaches are...

Full description

Saved in:
Bibliographic Details
Published in:Russian journal of nondestructive testing 2022-06, Vol.58 (6), p.499-509
Main Authors: Kumaresan, Samuel, Aultrin, K. S. Jai, Kumar, S. S., Anand, M. Dev
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c246t-9a7de4bf076513c47f7028d248b898089d80d9dca47c4836e20442dc89ad22f93
cites cdi_FETCH-LOGICAL-c246t-9a7de4bf076513c47f7028d248b898089d80d9dca47c4836e20442dc89ad22f93
container_end_page 509
container_issue 6
container_start_page 499
container_title Russian journal of nondestructive testing
container_volume 58
creator Kumaresan, Samuel
Aultrin, K. S. Jai
Kumar, S. S.
Anand, M. Dev
description Weld fault identification using X-ray pictures is a useful nondestructive testing technique. Traditionally, this job has relied on skilled human experts, while the extraction and classification of heterogeneity required their personal involvement. To overcome those challenges, various approaches are used, including machine learning (ML) and image processing technologies. Although the detection and categorization of low contrast and poor-quality images have been improved, the end result is still unsatisfactory. Unlike earlier ML-based research, this paper provides a new deep learning network-based classification approach. In this work base convolutional neural network architecture with optimization techniques was used to enhance the performance of the architecture to obtain a best performance result in simpler CNN architecture. In this work we have obtained overall classification accuracy of 89% using simple CNN with optimization technique.
doi_str_mv 10.1134/S1061830922060109
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2716549158</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2716549158</sourcerecordid><originalsourceid>FETCH-LOGICAL-c246t-9a7de4bf076513c47f7028d248b898089d80d9dca47c4836e20442dc89ad22f93</originalsourceid><addsrcrecordid>eNp1kEtPwzAQhC0EEqXwA7hZ4hxYP5LYR2h5SVV7aKseI9feFFdpEuxwgF9PqiBxQJx2tTPfjLSEXDO4ZUzIuyWDjCkBmnPIgIE-ISOWgUqEUOlpv_dyctTPyUWMewDgueAjspkitnSGJtS-3tEHE9HRpT-0FdLJfE43WDk6xRJtF-mkMjH60lvT-aam63hEFm3nD_5rOK3QvtX-_QMvyVlpqohXP3NM1k-Pq8lLMls8v07uZ4nlMusSbXKHcltCnqVMWJmXOXDluFRbpRUo7RQ47ayRuZVKZMhBSu6s0sZxXmoxJjdDbhuavjZ2xb75CHVfWfCcZanULFW9iw0uG5oYA5ZFG_zBhM-CQXH8X_Hnfz3DByb23nqH4Tf5f-gb4pRwSw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2716549158</pqid></control><display><type>article</type><title>Deep Learning Based Simple CNN Weld Defects Classification Using Optimization Technique</title><source>Springer Nature</source><creator>Kumaresan, Samuel ; Aultrin, K. S. Jai ; Kumar, S. S. ; Anand, M. Dev</creator><creatorcontrib>Kumaresan, Samuel ; Aultrin, K. S. Jai ; Kumar, S. S. ; Anand, M. Dev</creatorcontrib><description>Weld fault identification using X-ray pictures is a useful nondestructive testing technique. Traditionally, this job has relied on skilled human experts, while the extraction and classification of heterogeneity required their personal involvement. To overcome those challenges, various approaches are used, including machine learning (ML) and image processing technologies. Although the detection and categorization of low contrast and poor-quality images have been improved, the end result is still unsatisfactory. Unlike earlier ML-based research, this paper provides a new deep learning network-based classification approach. In this work base convolutional neural network architecture with optimization techniques was used to enhance the performance of the architecture to obtain a best performance result in simpler CNN architecture. In this work we have obtained overall classification accuracy of 89% using simple CNN with optimization technique.</description><identifier>ISSN: 1061-8309</identifier><identifier>EISSN: 1608-3385</identifier><identifier>DOI: 10.1134/S1061830922060109</identifier><language>eng</language><publisher>Moscow: Pleiades Publishing</publisher><subject>Artificial neural networks ; Characterization and Evaluation of Materials ; Chemistry and Materials Science ; Classification ; Computer architecture ; Deep learning ; Heterogeneity ; Image contrast ; Image processing ; Image quality ; Machine learning ; Materials Science ; Nondestructive testing ; Optimization ; Structural Materials ; Weld defects ; X-Ray Methods</subject><ispartof>Russian journal of nondestructive testing, 2022-06, Vol.58 (6), p.499-509</ispartof><rights>Pleiades Publishing, Ltd. 2022. ISSN 1061-8309, Russian Journal of Nondestructive Testing, 2022, Vol. 58, No. 6, pp. 499–509. © Pleiades Publishing, Ltd., 2022.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c246t-9a7de4bf076513c47f7028d248b898089d80d9dca47c4836e20442dc89ad22f93</citedby><cites>FETCH-LOGICAL-c246t-9a7de4bf076513c47f7028d248b898089d80d9dca47c4836e20442dc89ad22f93</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Kumaresan, Samuel</creatorcontrib><creatorcontrib>Aultrin, K. S. Jai</creatorcontrib><creatorcontrib>Kumar, S. S.</creatorcontrib><creatorcontrib>Anand, M. Dev</creatorcontrib><title>Deep Learning Based Simple CNN Weld Defects Classification Using Optimization Technique</title><title>Russian journal of nondestructive testing</title><addtitle>Russ J Nondestruct Test</addtitle><description>Weld fault identification using X-ray pictures is a useful nondestructive testing technique. Traditionally, this job has relied on skilled human experts, while the extraction and classification of heterogeneity required their personal involvement. To overcome those challenges, various approaches are used, including machine learning (ML) and image processing technologies. Although the detection and categorization of low contrast and poor-quality images have been improved, the end result is still unsatisfactory. Unlike earlier ML-based research, this paper provides a new deep learning network-based classification approach. In this work base convolutional neural network architecture with optimization techniques was used to enhance the performance of the architecture to obtain a best performance result in simpler CNN architecture. In this work we have obtained overall classification accuracy of 89% using simple CNN with optimization technique.</description><subject>Artificial neural networks</subject><subject>Characterization and Evaluation of Materials</subject><subject>Chemistry and Materials Science</subject><subject>Classification</subject><subject>Computer architecture</subject><subject>Deep learning</subject><subject>Heterogeneity</subject><subject>Image contrast</subject><subject>Image processing</subject><subject>Image quality</subject><subject>Machine learning</subject><subject>Materials Science</subject><subject>Nondestructive testing</subject><subject>Optimization</subject><subject>Structural Materials</subject><subject>Weld defects</subject><subject>X-Ray Methods</subject><issn>1061-8309</issn><issn>1608-3385</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp1kEtPwzAQhC0EEqXwA7hZ4hxYP5LYR2h5SVV7aKseI9feFFdpEuxwgF9PqiBxQJx2tTPfjLSEXDO4ZUzIuyWDjCkBmnPIgIE-ISOWgUqEUOlpv_dyctTPyUWMewDgueAjspkitnSGJtS-3tEHE9HRpT-0FdLJfE43WDk6xRJtF-mkMjH60lvT-aam63hEFm3nD_5rOK3QvtX-_QMvyVlpqohXP3NM1k-Pq8lLMls8v07uZ4nlMusSbXKHcltCnqVMWJmXOXDluFRbpRUo7RQ47ayRuZVKZMhBSu6s0sZxXmoxJjdDbhuavjZ2xb75CHVfWfCcZanULFW9iw0uG5oYA5ZFG_zBhM-CQXH8X_Hnfz3DByb23nqH4Tf5f-gb4pRwSw</recordid><startdate>20220601</startdate><enddate>20220601</enddate><creator>Kumaresan, Samuel</creator><creator>Aultrin, K. S. Jai</creator><creator>Kumar, S. S.</creator><creator>Anand, M. Dev</creator><general>Pleiades Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20220601</creationdate><title>Deep Learning Based Simple CNN Weld Defects Classification Using Optimization Technique</title><author>Kumaresan, Samuel ; Aultrin, K. S. Jai ; Kumar, S. S. ; Anand, M. Dev</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c246t-9a7de4bf076513c47f7028d248b898089d80d9dca47c4836e20442dc89ad22f93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Artificial neural networks</topic><topic>Characterization and Evaluation of Materials</topic><topic>Chemistry and Materials Science</topic><topic>Classification</topic><topic>Computer architecture</topic><topic>Deep learning</topic><topic>Heterogeneity</topic><topic>Image contrast</topic><topic>Image processing</topic><topic>Image quality</topic><topic>Machine learning</topic><topic>Materials Science</topic><topic>Nondestructive testing</topic><topic>Optimization</topic><topic>Structural Materials</topic><topic>Weld defects</topic><topic>X-Ray Methods</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kumaresan, Samuel</creatorcontrib><creatorcontrib>Aultrin, K. S. Jai</creatorcontrib><creatorcontrib>Kumar, S. S.</creatorcontrib><creatorcontrib>Anand, M. Dev</creatorcontrib><collection>CrossRef</collection><jtitle>Russian journal of nondestructive testing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kumaresan, Samuel</au><au>Aultrin, K. S. Jai</au><au>Kumar, S. S.</au><au>Anand, M. Dev</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Deep Learning Based Simple CNN Weld Defects Classification Using Optimization Technique</atitle><jtitle>Russian journal of nondestructive testing</jtitle><stitle>Russ J Nondestruct Test</stitle><date>2022-06-01</date><risdate>2022</risdate><volume>58</volume><issue>6</issue><spage>499</spage><epage>509</epage><pages>499-509</pages><issn>1061-8309</issn><eissn>1608-3385</eissn><abstract>Weld fault identification using X-ray pictures is a useful nondestructive testing technique. Traditionally, this job has relied on skilled human experts, while the extraction and classification of heterogeneity required their personal involvement. To overcome those challenges, various approaches are used, including machine learning (ML) and image processing technologies. Although the detection and categorization of low contrast and poor-quality images have been improved, the end result is still unsatisfactory. Unlike earlier ML-based research, this paper provides a new deep learning network-based classification approach. In this work base convolutional neural network architecture with optimization techniques was used to enhance the performance of the architecture to obtain a best performance result in simpler CNN architecture. In this work we have obtained overall classification accuracy of 89% using simple CNN with optimization technique.</abstract><cop>Moscow</cop><pub>Pleiades Publishing</pub><doi>10.1134/S1061830922060109</doi><tpages>11</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1061-8309
ispartof Russian journal of nondestructive testing, 2022-06, Vol.58 (6), p.499-509
issn 1061-8309
1608-3385
language eng
recordid cdi_proquest_journals_2716549158
source Springer Nature
subjects Artificial neural networks
Characterization and Evaluation of Materials
Chemistry and Materials Science
Classification
Computer architecture
Deep learning
Heterogeneity
Image contrast
Image processing
Image quality
Machine learning
Materials Science
Nondestructive testing
Optimization
Structural Materials
Weld defects
X-Ray Methods
title Deep Learning Based Simple CNN Weld Defects Classification Using Optimization Technique
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T19%3A01%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Deep%20Learning%20Based%20Simple%20CNN%20Weld%20Defects%20Classification%20Using%20Optimization%20Technique&rft.jtitle=Russian%20journal%20of%20nondestructive%20testing&rft.au=Kumaresan,%20Samuel&rft.date=2022-06-01&rft.volume=58&rft.issue=6&rft.spage=499&rft.epage=509&rft.pages=499-509&rft.issn=1061-8309&rft.eissn=1608-3385&rft_id=info:doi/10.1134/S1061830922060109&rft_dat=%3Cproquest_cross%3E2716549158%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c246t-9a7de4bf076513c47f7028d248b898089d80d9dca47c4836e20442dc89ad22f93%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2716549158&rft_id=info:pmid/&rfr_iscdi=true