Loading…
Low-power high-mobility organic single-crystal field-effect transistor
Evolving flexible electronics requires the development of high-mobility and low-power organic field-effect transistors (OFETs) that are crucial for emerging displays, sensors, and label technologies. Among diverse materials, polymer gate dielectrics and two-dimensional (2D) organic crystals have int...
Saved in:
Published in: | Science China materials 2022, Vol.65 (10), p.2779-2785 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c359t-44e1f2c6afc011a0e4e17e628560bbf9aa2f8ec48d1825121d08f733401b4b873 |
---|---|
cites | cdi_FETCH-LOGICAL-c359t-44e1f2c6afc011a0e4e17e628560bbf9aa2f8ec48d1825121d08f733401b4b873 |
container_end_page | 2785 |
container_issue | 10 |
container_start_page | 2779 |
container_title | Science China materials |
container_volume | 65 |
creator | Fu, Beibei Sun, Lingjie Liu, Lei Ji, Deyang Zhang, Xiaotao Yang, Fangxu Hu, Wenping |
description | Evolving flexible electronics requires the development of high-mobility and low-power organic field-effect transistors (OFETs) that are crucial for emerging displays, sensors, and label technologies. Among diverse materials, polymer gate dielectrics and two-dimensional (2D) organic crystals have intrinsic flexibility and natural compatibility with each other for OFETs with high performance; however, their combination lacks non-impurity and non-damage construction strategies. In this study, we developed a desirable OFET system using damage-free transfer of 2D organic single crystal, dinaphtho[2,3-
b
:2′,3′-
f
]thieno[3,2-
b
]thiophene on a unique polymer dielectric layer, poly(amic acid) (PAA). Benefiting from the unique PAA surface nanostructure and the long-range ordered characteristics of the 2D organic single crystal, the resulting OFETs show remarkable performance with high mobility and low operating voltage of 18.7 cm
2
V
−1
s
−1
and
−3
V, respectively. The result indicates that combining polymer gate dielectric with 2D organic single crystal using a high-quality method can produce flexible electronic devices with high performance. |
doi_str_mv | 10.1007/s40843-022-2035-y |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2716553027</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2716553027</sourcerecordid><originalsourceid>FETCH-LOGICAL-c359t-44e1f2c6afc011a0e4e17e628560bbf9aa2f8ec48d1825121d08f733401b4b873</originalsourceid><addsrcrecordid>eNp1kEFLxDAQhYMouKz7A7wVPEdn0qRNj7K4KhS86Dmk2aSbpdusSZel_94uFTx5mhl47w3vI-Qe4REByqfEQfKcAmOUQS7oeEUWDKuKcgF4Pe1QCSoZK27JKqU9AGAhECu5IJs6nOkxnG3Mdr7d0UNofOeHMQux1b03WfJ921lq4pgG3WXO225LrXPWDNkQdZ98GkK8IzdOd8mufueSfG1ePtdvtP54fV8_19Tkohoo5xYdM4V2BhA12OkubcGkKKBpXKU1c9IaLrcomUCGW5CuzHMO2PBGlvmSPMy5xxi-TzYNah9OsZ9eKlZOpUQO7KLCWWViSClap47RH3QcFYK6EFMzMTURUxdiapw8bPakSdu3Nv4l_2_6AZTNblA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2716553027</pqid></control><display><type>article</type><title>Low-power high-mobility organic single-crystal field-effect transistor</title><source>Springer Nature</source><creator>Fu, Beibei ; Sun, Lingjie ; Liu, Lei ; Ji, Deyang ; Zhang, Xiaotao ; Yang, Fangxu ; Hu, Wenping</creator><creatorcontrib>Fu, Beibei ; Sun, Lingjie ; Liu, Lei ; Ji, Deyang ; Zhang, Xiaotao ; Yang, Fangxu ; Hu, Wenping</creatorcontrib><description>Evolving flexible electronics requires the development of high-mobility and low-power organic field-effect transistors (OFETs) that are crucial for emerging displays, sensors, and label technologies. Among diverse materials, polymer gate dielectrics and two-dimensional (2D) organic crystals have intrinsic flexibility and natural compatibility with each other for OFETs with high performance; however, their combination lacks non-impurity and non-damage construction strategies. In this study, we developed a desirable OFET system using damage-free transfer of 2D organic single crystal, dinaphtho[2,3-
b
:2′,3′-
f
]thieno[3,2-
b
]thiophene on a unique polymer dielectric layer, poly(amic acid) (PAA). Benefiting from the unique PAA surface nanostructure and the long-range ordered characteristics of the 2D organic single crystal, the resulting OFETs show remarkable performance with high mobility and low operating voltage of 18.7 cm
2
V
−1
s
−1
and
−3
V, respectively. The result indicates that combining polymer gate dielectric with 2D organic single crystal using a high-quality method can produce flexible electronic devices with high performance.</description><identifier>ISSN: 2095-8226</identifier><identifier>EISSN: 2199-4501</identifier><identifier>DOI: 10.1007/s40843-022-2035-y</identifier><language>eng</language><publisher>Beijing: Science China Press</publisher><subject>Chemistry and Materials Science ; Chemistry/Food Science ; Damage ; Dielectrics ; Electronic devices ; Field effect transistors ; Flexible components ; Materials Science ; Organic crystals ; Polymers ; Power management ; Semiconductor devices ; Single crystals</subject><ispartof>Science China materials, 2022, Vol.65 (10), p.2779-2785</ispartof><rights>Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2022</rights><rights>Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2022.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c359t-44e1f2c6afc011a0e4e17e628560bbf9aa2f8ec48d1825121d08f733401b4b873</citedby><cites>FETCH-LOGICAL-c359t-44e1f2c6afc011a0e4e17e628560bbf9aa2f8ec48d1825121d08f733401b4b873</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Fu, Beibei</creatorcontrib><creatorcontrib>Sun, Lingjie</creatorcontrib><creatorcontrib>Liu, Lei</creatorcontrib><creatorcontrib>Ji, Deyang</creatorcontrib><creatorcontrib>Zhang, Xiaotao</creatorcontrib><creatorcontrib>Yang, Fangxu</creatorcontrib><creatorcontrib>Hu, Wenping</creatorcontrib><title>Low-power high-mobility organic single-crystal field-effect transistor</title><title>Science China materials</title><addtitle>Sci. China Mater</addtitle><description>Evolving flexible electronics requires the development of high-mobility and low-power organic field-effect transistors (OFETs) that are crucial for emerging displays, sensors, and label technologies. Among diverse materials, polymer gate dielectrics and two-dimensional (2D) organic crystals have intrinsic flexibility and natural compatibility with each other for OFETs with high performance; however, their combination lacks non-impurity and non-damage construction strategies. In this study, we developed a desirable OFET system using damage-free transfer of 2D organic single crystal, dinaphtho[2,3-
b
:2′,3′-
f
]thieno[3,2-
b
]thiophene on a unique polymer dielectric layer, poly(amic acid) (PAA). Benefiting from the unique PAA surface nanostructure and the long-range ordered characteristics of the 2D organic single crystal, the resulting OFETs show remarkable performance with high mobility and low operating voltage of 18.7 cm
2
V
−1
s
−1
and
−3
V, respectively. The result indicates that combining polymer gate dielectric with 2D organic single crystal using a high-quality method can produce flexible electronic devices with high performance.</description><subject>Chemistry and Materials Science</subject><subject>Chemistry/Food Science</subject><subject>Damage</subject><subject>Dielectrics</subject><subject>Electronic devices</subject><subject>Field effect transistors</subject><subject>Flexible components</subject><subject>Materials Science</subject><subject>Organic crystals</subject><subject>Polymers</subject><subject>Power management</subject><subject>Semiconductor devices</subject><subject>Single crystals</subject><issn>2095-8226</issn><issn>2199-4501</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp1kEFLxDAQhYMouKz7A7wVPEdn0qRNj7K4KhS86Dmk2aSbpdusSZel_94uFTx5mhl47w3vI-Qe4REByqfEQfKcAmOUQS7oeEUWDKuKcgF4Pe1QCSoZK27JKqU9AGAhECu5IJs6nOkxnG3Mdr7d0UNofOeHMQux1b03WfJ921lq4pgG3WXO225LrXPWDNkQdZ98GkK8IzdOd8mufueSfG1ePtdvtP54fV8_19Tkohoo5xYdM4V2BhA12OkubcGkKKBpXKU1c9IaLrcomUCGW5CuzHMO2PBGlvmSPMy5xxi-TzYNah9OsZ9eKlZOpUQO7KLCWWViSClap47RH3QcFYK6EFMzMTURUxdiapw8bPakSdu3Nv4l_2_6AZTNblA</recordid><startdate>2022</startdate><enddate>2022</enddate><creator>Fu, Beibei</creator><creator>Sun, Lingjie</creator><creator>Liu, Lei</creator><creator>Ji, Deyang</creator><creator>Zhang, Xiaotao</creator><creator>Yang, Fangxu</creator><creator>Hu, Wenping</creator><general>Science China Press</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>2022</creationdate><title>Low-power high-mobility organic single-crystal field-effect transistor</title><author>Fu, Beibei ; Sun, Lingjie ; Liu, Lei ; Ji, Deyang ; Zhang, Xiaotao ; Yang, Fangxu ; Hu, Wenping</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c359t-44e1f2c6afc011a0e4e17e628560bbf9aa2f8ec48d1825121d08f733401b4b873</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Chemistry and Materials Science</topic><topic>Chemistry/Food Science</topic><topic>Damage</topic><topic>Dielectrics</topic><topic>Electronic devices</topic><topic>Field effect transistors</topic><topic>Flexible components</topic><topic>Materials Science</topic><topic>Organic crystals</topic><topic>Polymers</topic><topic>Power management</topic><topic>Semiconductor devices</topic><topic>Single crystals</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fu, Beibei</creatorcontrib><creatorcontrib>Sun, Lingjie</creatorcontrib><creatorcontrib>Liu, Lei</creatorcontrib><creatorcontrib>Ji, Deyang</creatorcontrib><creatorcontrib>Zhang, Xiaotao</creatorcontrib><creatorcontrib>Yang, Fangxu</creatorcontrib><creatorcontrib>Hu, Wenping</creatorcontrib><collection>CrossRef</collection><jtitle>Science China materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fu, Beibei</au><au>Sun, Lingjie</au><au>Liu, Lei</au><au>Ji, Deyang</au><au>Zhang, Xiaotao</au><au>Yang, Fangxu</au><au>Hu, Wenping</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Low-power high-mobility organic single-crystal field-effect transistor</atitle><jtitle>Science China materials</jtitle><stitle>Sci. China Mater</stitle><date>2022</date><risdate>2022</risdate><volume>65</volume><issue>10</issue><spage>2779</spage><epage>2785</epage><pages>2779-2785</pages><issn>2095-8226</issn><eissn>2199-4501</eissn><abstract>Evolving flexible electronics requires the development of high-mobility and low-power organic field-effect transistors (OFETs) that are crucial for emerging displays, sensors, and label technologies. Among diverse materials, polymer gate dielectrics and two-dimensional (2D) organic crystals have intrinsic flexibility and natural compatibility with each other for OFETs with high performance; however, their combination lacks non-impurity and non-damage construction strategies. In this study, we developed a desirable OFET system using damage-free transfer of 2D organic single crystal, dinaphtho[2,3-
b
:2′,3′-
f
]thieno[3,2-
b
]thiophene on a unique polymer dielectric layer, poly(amic acid) (PAA). Benefiting from the unique PAA surface nanostructure and the long-range ordered characteristics of the 2D organic single crystal, the resulting OFETs show remarkable performance with high mobility and low operating voltage of 18.7 cm
2
V
−1
s
−1
and
−3
V, respectively. The result indicates that combining polymer gate dielectric with 2D organic single crystal using a high-quality method can produce flexible electronic devices with high performance.</abstract><cop>Beijing</cop><pub>Science China Press</pub><doi>10.1007/s40843-022-2035-y</doi><tpages>7</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2095-8226 |
ispartof | Science China materials, 2022, Vol.65 (10), p.2779-2785 |
issn | 2095-8226 2199-4501 |
language | eng |
recordid | cdi_proquest_journals_2716553027 |
source | Springer Nature |
subjects | Chemistry and Materials Science Chemistry/Food Science Damage Dielectrics Electronic devices Field effect transistors Flexible components Materials Science Organic crystals Polymers Power management Semiconductor devices Single crystals |
title | Low-power high-mobility organic single-crystal field-effect transistor |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T03%3A30%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Low-power%20high-mobility%20organic%20single-crystal%20field-effect%20transistor&rft.jtitle=Science%20China%20materials&rft.au=Fu,%20Beibei&rft.date=2022&rft.volume=65&rft.issue=10&rft.spage=2779&rft.epage=2785&rft.pages=2779-2785&rft.issn=2095-8226&rft.eissn=2199-4501&rft_id=info:doi/10.1007/s40843-022-2035-y&rft_dat=%3Cproquest_cross%3E2716553027%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c359t-44e1f2c6afc011a0e4e17e628560bbf9aa2f8ec48d1825121d08f733401b4b873%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2716553027&rft_id=info:pmid/&rfr_iscdi=true |