Loading…

The Split Flow Process of CO2 Capture with Aqueous Ammonia Using the eNRTL Model

Carbon Capture and Storage (CCS) technology has attracted increasing attention as global climate change accelerates. Carbon dioxide removal processes under development include pressure swing adsorption (PSA) and chemical absorption using amine solvents. In this paper, an ammonia solvent, which is re...

Full description

Saved in:
Bibliographic Details
Published in:Processes 2022-09, Vol.10 (9), p.1839
Main Authors: Jeong, Seung Won, Lee, Bomsock, Kim, Sung Young
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Carbon Capture and Storage (CCS) technology has attracted increasing attention as global climate change accelerates. Carbon dioxide removal processes under development include pressure swing adsorption (PSA) and chemical absorption using amine solvents. In this paper, an ammonia solvent, which is relatively inexpensive and has good material properties, was used instead of amines in the carbon dioxide removal process simulation as a chemical absorption method. This simulation used the eNRTL thermodynamics model which has the advantage of predicting ions in the liquid phase in Aspen Plus. A case study (Case Study 1) was conducted to verify the validity of the thermodynamic model. The purpose of this research was to find the operating conditions to eliminate more than 90% of the carbon dioxide contained in the flue gas from coal-fired power stations, and to lower heat duty and operating cost conditions. A second case study (Case Study 2) was conducted to find the operating conditions by comparing various process operating conditions. Additionally, this paper determined lower operating cost conditions by manipulating the amount of steam and cooling water. The results showed that the heater’s outlet temperature should be set at under 80 ℃ to lower the operating costs. As a result of changing the flow rate of the side stream of the split flow process, energy consumption was reduced when compared to the conventional flow process. It was shown that the split flow is a superior process with 10.24% less energy use than the conventional flow. In this study, the split flow process achieved an energy saving advantage when compared to the conventional flow process, and a carbon dioxide removal rate of 95% was achieved.
ISSN:2227-9717
2227-9717
DOI:10.3390/pr10091839