Loading…

Accelerated discovery of porous materials for carbon capture by machine learning: A review

In the past decades, greenhouse gases (e.g., anthropogenic CO 2 and CH 4 ) have raised significant concerns due to the foreseeable dire consequences in climate change. Capturing them via adsorption using porous materials has drawn much attention due to their low synthesis and regeneration cost and h...

Full description

Saved in:
Bibliographic Details
Published in:MRS bulletin 2022-04, Vol.47 (4), p.432-439
Main Authors: Zhang, Chi, Xie, Yunchao, Xie, Chen, Dong, Hongxing, Zhang, Long, Lin, Jian
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c319t-245e8879e323008578f5ef2d74cd9fb96cac0501a34a20ba43a839b522a3c7d03
cites cdi_FETCH-LOGICAL-c319t-245e8879e323008578f5ef2d74cd9fb96cac0501a34a20ba43a839b522a3c7d03
container_end_page 439
container_issue 4
container_start_page 432
container_title MRS bulletin
container_volume 47
creator Zhang, Chi
Xie, Yunchao
Xie, Chen
Dong, Hongxing
Zhang, Long
Lin, Jian
description In the past decades, greenhouse gases (e.g., anthropogenic CO 2 and CH 4 ) have raised significant concerns due to the foreseeable dire consequences in climate change. Capturing them via adsorption using porous materials has drawn much attention due to their low synthesis and regeneration cost and high capacity. Recently, the flourishing machine learning (ML) has been introduced to various fields of materials science, which also has shown great potential in accelerating the materials discovery for carbon capture. In this article, we first describe the general workflow of applying ML to tackle materials problems. Then we systematically summarize the recent research progress in the application of ML for development of porous carbon and metal–organic frameworks for carbon capture. Finally, we discuss the existing challenges, possible solutions, and research directions. This article will inspire exploration of new frontiers in the carbon capture by development of ML in porous materials research in the future. Graphical abstract
doi_str_mv 10.1557/s43577-022-00317-2
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2718226170</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2718226170</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-245e8879e323008578f5ef2d74cd9fb96cac0501a34a20ba43a839b522a3c7d03</originalsourceid><addsrcrecordid>eNp9kDtPwzAUhS0EEqXwB5gsMRv8iGuHrap4SZVYYGGxHOempGrjcp0U9d9jCBIb0x3O-c6VPkIuBb8WWpubVChtDONSMs6VMEwekYkolWWikPqYTLi1iplZWZySs5TWnAvNjZ6Qt3kIsAH0PdS0blOIe8ADjQ3dRYxDotucYOs3iTYRafBYxS6fXT8g0OqQ8_DedkA34LFru9UtnVOEfQuf5-SkyRxc_N4peb2_e1k8suXzw9NivmRBibJnstBgrSlBScW51cY2GhpZmyLUZVOVs-AD11x4VXjJK18ob1VZaSm9Cqbmakquxt0dxo8BUu_WccAuv3TSCCvlTJjvlhxbAWNKCI3bYbv1eHCCu2-HbnToskP349DJDKkRSrncrQD_pv-hvgBAc3RQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2718226170</pqid></control><display><type>article</type><title>Accelerated discovery of porous materials for carbon capture by machine learning: A review</title><source>Springer Nature:Jisc Collections:Springer Nature Read and Publish 2023-2025: Springer Reading List</source><creator>Zhang, Chi ; Xie, Yunchao ; Xie, Chen ; Dong, Hongxing ; Zhang, Long ; Lin, Jian</creator><creatorcontrib>Zhang, Chi ; Xie, Yunchao ; Xie, Chen ; Dong, Hongxing ; Zhang, Long ; Lin, Jian</creatorcontrib><description>In the past decades, greenhouse gases (e.g., anthropogenic CO 2 and CH 4 ) have raised significant concerns due to the foreseeable dire consequences in climate change. Capturing them via adsorption using porous materials has drawn much attention due to their low synthesis and regeneration cost and high capacity. Recently, the flourishing machine learning (ML) has been introduced to various fields of materials science, which also has shown great potential in accelerating the materials discovery for carbon capture. In this article, we first describe the general workflow of applying ML to tackle materials problems. Then we systematically summarize the recent research progress in the application of ML for development of porous carbon and metal–organic frameworks for carbon capture. Finally, we discuss the existing challenges, possible solutions, and research directions. This article will inspire exploration of new frontiers in the carbon capture by development of ML in porous materials research in the future. Graphical abstract</description><identifier>ISSN: 0883-7694</identifier><identifier>EISSN: 1938-1425</identifier><identifier>DOI: 10.1557/s43577-022-00317-2</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Applied and Technical Physics ; Carbon sequestration ; Characterization and Evaluation of Materials ; Chemistry and Materials Science ; Energy Materials ; Greenhouse gases ; Machine learning ; Materials Engineering ; Materials Science ; Metal-organic frameworks ; Nanotechnology ; Porous materials ; Review Article ; Workflow</subject><ispartof>MRS bulletin, 2022-04, Vol.47 (4), p.432-439</ispartof><rights>The Author(s), under exclusive License to the Materials Research Society 2022</rights><rights>The Author(s), under exclusive License to the Materials Research Society 2022.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-245e8879e323008578f5ef2d74cd9fb96cac0501a34a20ba43a839b522a3c7d03</citedby><cites>FETCH-LOGICAL-c319t-245e8879e323008578f5ef2d74cd9fb96cac0501a34a20ba43a839b522a3c7d03</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Zhang, Chi</creatorcontrib><creatorcontrib>Xie, Yunchao</creatorcontrib><creatorcontrib>Xie, Chen</creatorcontrib><creatorcontrib>Dong, Hongxing</creatorcontrib><creatorcontrib>Zhang, Long</creatorcontrib><creatorcontrib>Lin, Jian</creatorcontrib><title>Accelerated discovery of porous materials for carbon capture by machine learning: A review</title><title>MRS bulletin</title><addtitle>MRS Bulletin</addtitle><description>In the past decades, greenhouse gases (e.g., anthropogenic CO 2 and CH 4 ) have raised significant concerns due to the foreseeable dire consequences in climate change. Capturing them via adsorption using porous materials has drawn much attention due to their low synthesis and regeneration cost and high capacity. Recently, the flourishing machine learning (ML) has been introduced to various fields of materials science, which also has shown great potential in accelerating the materials discovery for carbon capture. In this article, we first describe the general workflow of applying ML to tackle materials problems. Then we systematically summarize the recent research progress in the application of ML for development of porous carbon and metal–organic frameworks for carbon capture. Finally, we discuss the existing challenges, possible solutions, and research directions. This article will inspire exploration of new frontiers in the carbon capture by development of ML in porous materials research in the future. Graphical abstract</description><subject>Applied and Technical Physics</subject><subject>Carbon sequestration</subject><subject>Characterization and Evaluation of Materials</subject><subject>Chemistry and Materials Science</subject><subject>Energy Materials</subject><subject>Greenhouse gases</subject><subject>Machine learning</subject><subject>Materials Engineering</subject><subject>Materials Science</subject><subject>Metal-organic frameworks</subject><subject>Nanotechnology</subject><subject>Porous materials</subject><subject>Review Article</subject><subject>Workflow</subject><issn>0883-7694</issn><issn>1938-1425</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kDtPwzAUhS0EEqXwB5gsMRv8iGuHrap4SZVYYGGxHOempGrjcp0U9d9jCBIb0x3O-c6VPkIuBb8WWpubVChtDONSMs6VMEwekYkolWWikPqYTLi1iplZWZySs5TWnAvNjZ6Qt3kIsAH0PdS0blOIe8ADjQ3dRYxDotucYOs3iTYRafBYxS6fXT8g0OqQ8_DedkA34LFru9UtnVOEfQuf5-SkyRxc_N4peb2_e1k8suXzw9NivmRBibJnstBgrSlBScW51cY2GhpZmyLUZVOVs-AD11x4VXjJK18ob1VZaSm9Cqbmakquxt0dxo8BUu_WccAuv3TSCCvlTJjvlhxbAWNKCI3bYbv1eHCCu2-HbnToskP349DJDKkRSrncrQD_pv-hvgBAc3RQ</recordid><startdate>20220401</startdate><enddate>20220401</enddate><creator>Zhang, Chi</creator><creator>Xie, Yunchao</creator><creator>Xie, Chen</creator><creator>Dong, Hongxing</creator><creator>Zhang, Long</creator><creator>Lin, Jian</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7TA</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope></search><sort><creationdate>20220401</creationdate><title>Accelerated discovery of porous materials for carbon capture by machine learning: A review</title><author>Zhang, Chi ; Xie, Yunchao ; Xie, Chen ; Dong, Hongxing ; Zhang, Long ; Lin, Jian</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-245e8879e323008578f5ef2d74cd9fb96cac0501a34a20ba43a839b522a3c7d03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Applied and Technical Physics</topic><topic>Carbon sequestration</topic><topic>Characterization and Evaluation of Materials</topic><topic>Chemistry and Materials Science</topic><topic>Energy Materials</topic><topic>Greenhouse gases</topic><topic>Machine learning</topic><topic>Materials Engineering</topic><topic>Materials Science</topic><topic>Metal-organic frameworks</topic><topic>Nanotechnology</topic><topic>Porous materials</topic><topic>Review Article</topic><topic>Workflow</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Chi</creatorcontrib><creatorcontrib>Xie, Yunchao</creatorcontrib><creatorcontrib>Xie, Chen</creatorcontrib><creatorcontrib>Dong, Hongxing</creatorcontrib><creatorcontrib>Zhang, Long</creatorcontrib><creatorcontrib>Lin, Jian</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>MRS bulletin</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Chi</au><au>Xie, Yunchao</au><au>Xie, Chen</au><au>Dong, Hongxing</au><au>Zhang, Long</au><au>Lin, Jian</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Accelerated discovery of porous materials for carbon capture by machine learning: A review</atitle><jtitle>MRS bulletin</jtitle><stitle>MRS Bulletin</stitle><date>2022-04-01</date><risdate>2022</risdate><volume>47</volume><issue>4</issue><spage>432</spage><epage>439</epage><pages>432-439</pages><issn>0883-7694</issn><eissn>1938-1425</eissn><abstract>In the past decades, greenhouse gases (e.g., anthropogenic CO 2 and CH 4 ) have raised significant concerns due to the foreseeable dire consequences in climate change. Capturing them via adsorption using porous materials has drawn much attention due to their low synthesis and regeneration cost and high capacity. Recently, the flourishing machine learning (ML) has been introduced to various fields of materials science, which also has shown great potential in accelerating the materials discovery for carbon capture. In this article, we first describe the general workflow of applying ML to tackle materials problems. Then we systematically summarize the recent research progress in the application of ML for development of porous carbon and metal–organic frameworks for carbon capture. Finally, we discuss the existing challenges, possible solutions, and research directions. This article will inspire exploration of new frontiers in the carbon capture by development of ML in porous materials research in the future. Graphical abstract</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1557/s43577-022-00317-2</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0883-7694
ispartof MRS bulletin, 2022-04, Vol.47 (4), p.432-439
issn 0883-7694
1938-1425
language eng
recordid cdi_proquest_journals_2718226170
source Springer Nature:Jisc Collections:Springer Nature Read and Publish 2023-2025: Springer Reading List
subjects Applied and Technical Physics
Carbon sequestration
Characterization and Evaluation of Materials
Chemistry and Materials Science
Energy Materials
Greenhouse gases
Machine learning
Materials Engineering
Materials Science
Metal-organic frameworks
Nanotechnology
Porous materials
Review Article
Workflow
title Accelerated discovery of porous materials for carbon capture by machine learning: A review
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-20T16%3A19%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Accelerated%20discovery%20of%20porous%20materials%20for%20carbon%20capture%20by%20machine%20learning:%20A%20review&rft.jtitle=MRS%20bulletin&rft.au=Zhang,%20Chi&rft.date=2022-04-01&rft.volume=47&rft.issue=4&rft.spage=432&rft.epage=439&rft.pages=432-439&rft.issn=0883-7694&rft.eissn=1938-1425&rft_id=info:doi/10.1557/s43577-022-00317-2&rft_dat=%3Cproquest_cross%3E2718226170%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c319t-245e8879e323008578f5ef2d74cd9fb96cac0501a34a20ba43a839b522a3c7d03%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2718226170&rft_id=info:pmid/&rfr_iscdi=true