Loading…
A Valid and Efficient Trinomial Tree for General Local-Volatility Models
The local-volatility model assumes the instantaneous volatility is a deterministic function of the underlying asset price and time. The model is very popular because it attempts to fit the volatility smile while retaining the preference freedom of the Black–Scholes option pricing model. As local-vol...
Saved in:
Published in: | Computational economics 2022-10, Vol.60 (3), p.817-832 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c399t-f62eb7983dc8e64cf2fc13dc94984da410a5b2b2df3014fa1fa606fc8cad3dc23 |
container_end_page | 832 |
container_issue | 3 |
container_start_page | 817 |
container_title | Computational economics |
container_volume | 60 |
creator | Lok, U Hou Lyuu, Yuh-Dauh |
description | The local-volatility model assumes the instantaneous volatility is a deterministic function of the underlying asset price and time. The model is very popular because it attempts to fit the volatility smile while retaining the preference freedom of the Black–Scholes option pricing model. As local-volatility model does not admit of analytical formulas in general, numerical methods are required. Tree is one such method because of its simplicity and efficiency. However, few trees in the literature guarantee valid transition probabilities and underlying asset prices simultaneously. This paper presents an efficient tree, called the extended waterline tree, that is provably valid for practically all local-volatility models. Numerical results confirm the tree’s excellent performance. |
doi_str_mv | 10.1007/s10614-021-10166-x |
format | article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2718468452</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A719979072</galeid><sourcerecordid>A719979072</sourcerecordid><originalsourceid>FETCH-LOGICAL-c399t-f62eb7983dc8e64cf2fc13dc94984da410a5b2b2df3014fa1fa606fc8cad3dc23</originalsourceid><addsrcrecordid>eNp9kM1OAyEURonRxFp9AVeTuEaBYWBYNk1tTWrc1G4J5aehoUOFadK-vdQxcWfugsvNdy7kAPCI0TNGiL9kjBimEBEMMcKMwdMVGOGGEygEp9dghAThkCMhbsFdzjuEUIMJGYHFpFqr4E2lOlPNnPPa266vVsl3ce9VKJ21lYupmtvOpjJYRq0CXMegeh98f67eo7Eh34Mbp0K2D7_nGHy-zlbTBVx-zN-mkyXUtRA9dIzYDRdtbXRrGdWOOI3LRVDRUqMoRqrZkA0xrkaYOoWdYog53WplSozUY_A07D2k-HW0uZe7eExdeVISjlvKWtpcUs9DaquClb5zsU9KlzJ273XsrPNlPuG46BGIXwAyADrFnJN18pD8XqWzxEheFMtBsSyK5Y9ieSpQPUC5hLutTX9_-Yf6BiZdfp4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2718468452</pqid></control><display><type>article</type><title>A Valid and Efficient Trinomial Tree for General Local-Volatility Models</title><source>EconLit s plnými texty</source><source>International Bibliography of the Social Sciences (IBSS)</source><source>ABI/INFORM Collection</source><source>Springer Nature</source><creator>Lok, U Hou ; Lyuu, Yuh-Dauh</creator><creatorcontrib>Lok, U Hou ; Lyuu, Yuh-Dauh</creatorcontrib><description>The local-volatility model assumes the instantaneous volatility is a deterministic function of the underlying asset price and time. The model is very popular because it attempts to fit the volatility smile while retaining the preference freedom of the Black–Scholes option pricing model. As local-volatility model does not admit of analytical formulas in general, numerical methods are required. Tree is one such method because of its simplicity and efficiency. However, few trees in the literature guarantee valid transition probabilities and underlying asset prices simultaneously. This paper presents an efficient tree, called the extended waterline tree, that is provably valid for practically all local-volatility models. Numerical results confirm the tree’s excellent performance.</description><identifier>ISSN: 0927-7099</identifier><identifier>EISSN: 1572-9974</identifier><identifier>DOI: 10.1007/s10614-021-10166-x</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Arbitrage ; Assets ; Behavioral/Experimental Economics ; Computer Appl. in Social and Behavioral Sciences ; Economic Theory/Quantitative Economics/Mathematical Methods ; Economics ; Economics and Finance ; Interest rates ; Math Applications in Computer Science ; Mathematical models ; Numerical analysis ; Numerical methods ; Operations Research/Decision Theory ; Prices ; Securities prices ; Simplicity ; Transition probabilities ; Trees ; Volatility</subject><ispartof>Computational economics, 2022-10, Vol.60 (3), p.817-832</ispartof><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021</rights><rights>COPYRIGHT 2022 Springer</rights><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c399t-f62eb7983dc8e64cf2fc13dc94984da410a5b2b2df3014fa1fa606fc8cad3dc23</cites><orcidid>0000-0003-3023-1961</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2718468452/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2718468452?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,780,784,11688,12847,27924,27925,33223,36060,44363,74895</link.rule.ids></links><search><creatorcontrib>Lok, U Hou</creatorcontrib><creatorcontrib>Lyuu, Yuh-Dauh</creatorcontrib><title>A Valid and Efficient Trinomial Tree for General Local-Volatility Models</title><title>Computational economics</title><addtitle>Comput Econ</addtitle><description>The local-volatility model assumes the instantaneous volatility is a deterministic function of the underlying asset price and time. The model is very popular because it attempts to fit the volatility smile while retaining the preference freedom of the Black–Scholes option pricing model. As local-volatility model does not admit of analytical formulas in general, numerical methods are required. Tree is one such method because of its simplicity and efficiency. However, few trees in the literature guarantee valid transition probabilities and underlying asset prices simultaneously. This paper presents an efficient tree, called the extended waterline tree, that is provably valid for practically all local-volatility models. Numerical results confirm the tree’s excellent performance.</description><subject>Arbitrage</subject><subject>Assets</subject><subject>Behavioral/Experimental Economics</subject><subject>Computer Appl. in Social and Behavioral Sciences</subject><subject>Economic Theory/Quantitative Economics/Mathematical Methods</subject><subject>Economics</subject><subject>Economics and Finance</subject><subject>Interest rates</subject><subject>Math Applications in Computer Science</subject><subject>Mathematical models</subject><subject>Numerical analysis</subject><subject>Numerical methods</subject><subject>Operations Research/Decision Theory</subject><subject>Prices</subject><subject>Securities prices</subject><subject>Simplicity</subject><subject>Transition probabilities</subject><subject>Trees</subject><subject>Volatility</subject><issn>0927-7099</issn><issn>1572-9974</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>8BJ</sourceid><sourceid>M0C</sourceid><recordid>eNp9kM1OAyEURonRxFp9AVeTuEaBYWBYNk1tTWrc1G4J5aehoUOFadK-vdQxcWfugsvNdy7kAPCI0TNGiL9kjBimEBEMMcKMwdMVGOGGEygEp9dghAThkCMhbsFdzjuEUIMJGYHFpFqr4E2lOlPNnPPa266vVsl3ce9VKJ21lYupmtvOpjJYRq0CXMegeh98f67eo7Eh34Mbp0K2D7_nGHy-zlbTBVx-zN-mkyXUtRA9dIzYDRdtbXRrGdWOOI3LRVDRUqMoRqrZkA0xrkaYOoWdYog53WplSozUY_A07D2k-HW0uZe7eExdeVISjlvKWtpcUs9DaquClb5zsU9KlzJ273XsrPNlPuG46BGIXwAyADrFnJN18pD8XqWzxEheFMtBsSyK5Y9ieSpQPUC5hLutTX9_-Yf6BiZdfp4</recordid><startdate>20221001</startdate><enddate>20221001</enddate><creator>Lok, U Hou</creator><creator>Lyuu, Yuh-Dauh</creator><general>Springer US</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>8AO</scope><scope>8BJ</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FQK</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JBE</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>L.-</scope><scope>M0C</scope><scope>P5Z</scope><scope>P62</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><orcidid>https://orcid.org/0000-0003-3023-1961</orcidid></search><sort><creationdate>20221001</creationdate><title>A Valid and Efficient Trinomial Tree for General Local-Volatility Models</title><author>Lok, U Hou ; Lyuu, Yuh-Dauh</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c399t-f62eb7983dc8e64cf2fc13dc94984da410a5b2b2df3014fa1fa606fc8cad3dc23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Arbitrage</topic><topic>Assets</topic><topic>Behavioral/Experimental Economics</topic><topic>Computer Appl. in Social and Behavioral Sciences</topic><topic>Economic Theory/Quantitative Economics/Mathematical Methods</topic><topic>Economics</topic><topic>Economics and Finance</topic><topic>Interest rates</topic><topic>Math Applications in Computer Science</topic><topic>Mathematical models</topic><topic>Numerical analysis</topic><topic>Numerical methods</topic><topic>Operations Research/Decision Theory</topic><topic>Prices</topic><topic>Securities prices</topic><topic>Simplicity</topic><topic>Transition probabilities</topic><topic>Trees</topic><topic>Volatility</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lok, U Hou</creatorcontrib><creatorcontrib>Lyuu, Yuh-Dauh</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection</collection><collection>ProQuest Pharma Collection</collection><collection>International Bibliography of the Social Sciences (IBSS)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>International Bibliography of the Social Sciences</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>International Bibliography of the Social Sciences</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ABI/INFORM Collection</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><jtitle>Computational economics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lok, U Hou</au><au>Lyuu, Yuh-Dauh</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Valid and Efficient Trinomial Tree for General Local-Volatility Models</atitle><jtitle>Computational economics</jtitle><stitle>Comput Econ</stitle><date>2022-10-01</date><risdate>2022</risdate><volume>60</volume><issue>3</issue><spage>817</spage><epage>832</epage><pages>817-832</pages><issn>0927-7099</issn><eissn>1572-9974</eissn><abstract>The local-volatility model assumes the instantaneous volatility is a deterministic function of the underlying asset price and time. The model is very popular because it attempts to fit the volatility smile while retaining the preference freedom of the Black–Scholes option pricing model. As local-volatility model does not admit of analytical formulas in general, numerical methods are required. Tree is one such method because of its simplicity and efficiency. However, few trees in the literature guarantee valid transition probabilities and underlying asset prices simultaneously. This paper presents an efficient tree, called the extended waterline tree, that is provably valid for practically all local-volatility models. Numerical results confirm the tree’s excellent performance.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10614-021-10166-x</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0003-3023-1961</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0927-7099 |
ispartof | Computational economics, 2022-10, Vol.60 (3), p.817-832 |
issn | 0927-7099 1572-9974 |
language | eng |
recordid | cdi_proquest_journals_2718468452 |
source | EconLit s plnými texty; International Bibliography of the Social Sciences (IBSS); ABI/INFORM Collection; Springer Nature |
subjects | Arbitrage Assets Behavioral/Experimental Economics Computer Appl. in Social and Behavioral Sciences Economic Theory/Quantitative Economics/Mathematical Methods Economics Economics and Finance Interest rates Math Applications in Computer Science Mathematical models Numerical analysis Numerical methods Operations Research/Decision Theory Prices Securities prices Simplicity Transition probabilities Trees Volatility |
title | A Valid and Efficient Trinomial Tree for General Local-Volatility Models |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T21%3A33%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Valid%20and%20Efficient%20Trinomial%20Tree%20for%20General%20Local-Volatility%20Models&rft.jtitle=Computational%20economics&rft.au=Lok,%20U%20Hou&rft.date=2022-10-01&rft.volume=60&rft.issue=3&rft.spage=817&rft.epage=832&rft.pages=817-832&rft.issn=0927-7099&rft.eissn=1572-9974&rft_id=info:doi/10.1007/s10614-021-10166-x&rft_dat=%3Cgale_proqu%3EA719979072%3C/gale_proqu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c399t-f62eb7983dc8e64cf2fc13dc94984da410a5b2b2df3014fa1fa606fc8cad3dc23%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2718468452&rft_id=info:pmid/&rft_galeid=A719979072&rfr_iscdi=true |