Loading…

A Valid and Efficient Trinomial Tree for General Local-Volatility Models

The local-volatility model assumes the instantaneous volatility is a deterministic function of the underlying asset price and time. The model is very popular because it attempts to fit the volatility smile while retaining the preference freedom of the Black–Scholes option pricing model. As local-vol...

Full description

Saved in:
Bibliographic Details
Published in:Computational economics 2022-10, Vol.60 (3), p.817-832
Main Authors: Lok, U Hou, Lyuu, Yuh-Dauh
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c399t-f62eb7983dc8e64cf2fc13dc94984da410a5b2b2df3014fa1fa606fc8cad3dc23
container_end_page 832
container_issue 3
container_start_page 817
container_title Computational economics
container_volume 60
creator Lok, U Hou
Lyuu, Yuh-Dauh
description The local-volatility model assumes the instantaneous volatility is a deterministic function of the underlying asset price and time. The model is very popular because it attempts to fit the volatility smile while retaining the preference freedom of the Black–Scholes option pricing model. As local-volatility model does not admit of analytical formulas in general, numerical methods are required. Tree is one such method because of its simplicity and efficiency. However, few trees in the literature guarantee valid transition probabilities and underlying asset prices simultaneously. This paper presents an efficient tree, called the extended waterline tree, that is provably valid for practically all local-volatility models. Numerical results confirm the tree’s excellent performance.
doi_str_mv 10.1007/s10614-021-10166-x
format article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2718468452</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A719979072</galeid><sourcerecordid>A719979072</sourcerecordid><originalsourceid>FETCH-LOGICAL-c399t-f62eb7983dc8e64cf2fc13dc94984da410a5b2b2df3014fa1fa606fc8cad3dc23</originalsourceid><addsrcrecordid>eNp9kM1OAyEURonRxFp9AVeTuEaBYWBYNk1tTWrc1G4J5aehoUOFadK-vdQxcWfugsvNdy7kAPCI0TNGiL9kjBimEBEMMcKMwdMVGOGGEygEp9dghAThkCMhbsFdzjuEUIMJGYHFpFqr4E2lOlPNnPPa266vVsl3ce9VKJ21lYupmtvOpjJYRq0CXMegeh98f67eo7Eh34Mbp0K2D7_nGHy-zlbTBVx-zN-mkyXUtRA9dIzYDRdtbXRrGdWOOI3LRVDRUqMoRqrZkA0xrkaYOoWdYog53WplSozUY_A07D2k-HW0uZe7eExdeVISjlvKWtpcUs9DaquClb5zsU9KlzJ273XsrPNlPuG46BGIXwAyADrFnJN18pD8XqWzxEheFMtBsSyK5Y9ieSpQPUC5hLutTX9_-Yf6BiZdfp4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2718468452</pqid></control><display><type>article</type><title>A Valid and Efficient Trinomial Tree for General Local-Volatility Models</title><source>EconLit s plnými texty</source><source>International Bibliography of the Social Sciences (IBSS)</source><source>ABI/INFORM Collection</source><source>Springer Nature</source><creator>Lok, U Hou ; Lyuu, Yuh-Dauh</creator><creatorcontrib>Lok, U Hou ; Lyuu, Yuh-Dauh</creatorcontrib><description>The local-volatility model assumes the instantaneous volatility is a deterministic function of the underlying asset price and time. The model is very popular because it attempts to fit the volatility smile while retaining the preference freedom of the Black–Scholes option pricing model. As local-volatility model does not admit of analytical formulas in general, numerical methods are required. Tree is one such method because of its simplicity and efficiency. However, few trees in the literature guarantee valid transition probabilities and underlying asset prices simultaneously. This paper presents an efficient tree, called the extended waterline tree, that is provably valid for practically all local-volatility models. Numerical results confirm the tree’s excellent performance.</description><identifier>ISSN: 0927-7099</identifier><identifier>EISSN: 1572-9974</identifier><identifier>DOI: 10.1007/s10614-021-10166-x</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Arbitrage ; Assets ; Behavioral/Experimental Economics ; Computer Appl. in Social and Behavioral Sciences ; Economic Theory/Quantitative Economics/Mathematical Methods ; Economics ; Economics and Finance ; Interest rates ; Math Applications in Computer Science ; Mathematical models ; Numerical analysis ; Numerical methods ; Operations Research/Decision Theory ; Prices ; Securities prices ; Simplicity ; Transition probabilities ; Trees ; Volatility</subject><ispartof>Computational economics, 2022-10, Vol.60 (3), p.817-832</ispartof><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021</rights><rights>COPYRIGHT 2022 Springer</rights><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c399t-f62eb7983dc8e64cf2fc13dc94984da410a5b2b2df3014fa1fa606fc8cad3dc23</cites><orcidid>0000-0003-3023-1961</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2718468452/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2718468452?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,780,784,11688,12847,27924,27925,33223,36060,44363,74895</link.rule.ids></links><search><creatorcontrib>Lok, U Hou</creatorcontrib><creatorcontrib>Lyuu, Yuh-Dauh</creatorcontrib><title>A Valid and Efficient Trinomial Tree for General Local-Volatility Models</title><title>Computational economics</title><addtitle>Comput Econ</addtitle><description>The local-volatility model assumes the instantaneous volatility is a deterministic function of the underlying asset price and time. The model is very popular because it attempts to fit the volatility smile while retaining the preference freedom of the Black–Scholes option pricing model. As local-volatility model does not admit of analytical formulas in general, numerical methods are required. Tree is one such method because of its simplicity and efficiency. However, few trees in the literature guarantee valid transition probabilities and underlying asset prices simultaneously. This paper presents an efficient tree, called the extended waterline tree, that is provably valid for practically all local-volatility models. Numerical results confirm the tree’s excellent performance.</description><subject>Arbitrage</subject><subject>Assets</subject><subject>Behavioral/Experimental Economics</subject><subject>Computer Appl. in Social and Behavioral Sciences</subject><subject>Economic Theory/Quantitative Economics/Mathematical Methods</subject><subject>Economics</subject><subject>Economics and Finance</subject><subject>Interest rates</subject><subject>Math Applications in Computer Science</subject><subject>Mathematical models</subject><subject>Numerical analysis</subject><subject>Numerical methods</subject><subject>Operations Research/Decision Theory</subject><subject>Prices</subject><subject>Securities prices</subject><subject>Simplicity</subject><subject>Transition probabilities</subject><subject>Trees</subject><subject>Volatility</subject><issn>0927-7099</issn><issn>1572-9974</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>8BJ</sourceid><sourceid>M0C</sourceid><recordid>eNp9kM1OAyEURonRxFp9AVeTuEaBYWBYNk1tTWrc1G4J5aehoUOFadK-vdQxcWfugsvNdy7kAPCI0TNGiL9kjBimEBEMMcKMwdMVGOGGEygEp9dghAThkCMhbsFdzjuEUIMJGYHFpFqr4E2lOlPNnPPa266vVsl3ce9VKJ21lYupmtvOpjJYRq0CXMegeh98f67eo7Eh34Mbp0K2D7_nGHy-zlbTBVx-zN-mkyXUtRA9dIzYDRdtbXRrGdWOOI3LRVDRUqMoRqrZkA0xrkaYOoWdYog53WplSozUY_A07D2k-HW0uZe7eExdeVISjlvKWtpcUs9DaquClb5zsU9KlzJ273XsrPNlPuG46BGIXwAyADrFnJN18pD8XqWzxEheFMtBsSyK5Y9ieSpQPUC5hLutTX9_-Yf6BiZdfp4</recordid><startdate>20221001</startdate><enddate>20221001</enddate><creator>Lok, U Hou</creator><creator>Lyuu, Yuh-Dauh</creator><general>Springer US</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>8AO</scope><scope>8BJ</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FQK</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JBE</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>L.-</scope><scope>M0C</scope><scope>P5Z</scope><scope>P62</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><orcidid>https://orcid.org/0000-0003-3023-1961</orcidid></search><sort><creationdate>20221001</creationdate><title>A Valid and Efficient Trinomial Tree for General Local-Volatility Models</title><author>Lok, U Hou ; Lyuu, Yuh-Dauh</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c399t-f62eb7983dc8e64cf2fc13dc94984da410a5b2b2df3014fa1fa606fc8cad3dc23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Arbitrage</topic><topic>Assets</topic><topic>Behavioral/Experimental Economics</topic><topic>Computer Appl. in Social and Behavioral Sciences</topic><topic>Economic Theory/Quantitative Economics/Mathematical Methods</topic><topic>Economics</topic><topic>Economics and Finance</topic><topic>Interest rates</topic><topic>Math Applications in Computer Science</topic><topic>Mathematical models</topic><topic>Numerical analysis</topic><topic>Numerical methods</topic><topic>Operations Research/Decision Theory</topic><topic>Prices</topic><topic>Securities prices</topic><topic>Simplicity</topic><topic>Transition probabilities</topic><topic>Trees</topic><topic>Volatility</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lok, U Hou</creatorcontrib><creatorcontrib>Lyuu, Yuh-Dauh</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection</collection><collection>ProQuest Pharma Collection</collection><collection>International Bibliography of the Social Sciences (IBSS)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>International Bibliography of the Social Sciences</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>International Bibliography of the Social Sciences</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ABI/INFORM Collection</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><jtitle>Computational economics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lok, U Hou</au><au>Lyuu, Yuh-Dauh</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Valid and Efficient Trinomial Tree for General Local-Volatility Models</atitle><jtitle>Computational economics</jtitle><stitle>Comput Econ</stitle><date>2022-10-01</date><risdate>2022</risdate><volume>60</volume><issue>3</issue><spage>817</spage><epage>832</epage><pages>817-832</pages><issn>0927-7099</issn><eissn>1572-9974</eissn><abstract>The local-volatility model assumes the instantaneous volatility is a deterministic function of the underlying asset price and time. The model is very popular because it attempts to fit the volatility smile while retaining the preference freedom of the Black–Scholes option pricing model. As local-volatility model does not admit of analytical formulas in general, numerical methods are required. Tree is one such method because of its simplicity and efficiency. However, few trees in the literature guarantee valid transition probabilities and underlying asset prices simultaneously. This paper presents an efficient tree, called the extended waterline tree, that is provably valid for practically all local-volatility models. Numerical results confirm the tree’s excellent performance.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10614-021-10166-x</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0003-3023-1961</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0927-7099
ispartof Computational economics, 2022-10, Vol.60 (3), p.817-832
issn 0927-7099
1572-9974
language eng
recordid cdi_proquest_journals_2718468452
source EconLit s plnými texty; International Bibliography of the Social Sciences (IBSS); ABI/INFORM Collection; Springer Nature
subjects Arbitrage
Assets
Behavioral/Experimental Economics
Computer Appl. in Social and Behavioral Sciences
Economic Theory/Quantitative Economics/Mathematical Methods
Economics
Economics and Finance
Interest rates
Math Applications in Computer Science
Mathematical models
Numerical analysis
Numerical methods
Operations Research/Decision Theory
Prices
Securities prices
Simplicity
Transition probabilities
Trees
Volatility
title A Valid and Efficient Trinomial Tree for General Local-Volatility Models
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T21%3A33%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Valid%20and%20Efficient%20Trinomial%20Tree%20for%20General%20Local-Volatility%20Models&rft.jtitle=Computational%20economics&rft.au=Lok,%20U%20Hou&rft.date=2022-10-01&rft.volume=60&rft.issue=3&rft.spage=817&rft.epage=832&rft.pages=817-832&rft.issn=0927-7099&rft.eissn=1572-9974&rft_id=info:doi/10.1007/s10614-021-10166-x&rft_dat=%3Cgale_proqu%3EA719979072%3C/gale_proqu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c399t-f62eb7983dc8e64cf2fc13dc94984da410a5b2b2df3014fa1fa606fc8cad3dc23%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2718468452&rft_id=info:pmid/&rft_galeid=A719979072&rfr_iscdi=true