Loading…

Machine learning-accelerated chemistry modeling of protoplanetary disks

Aims. With the large amount of molecular emission data from (sub)millimeter observatories and incoming James Webb Space Telescope infrared spectroscopy, access to fast forward models of the chemical composition of protoplanetary disks is of paramount importance. Methods. We used a thermo-chemical mo...

Full description

Saved in:
Bibliographic Details
Published in:arXiv.org 2022-09
Main Authors: Smirnov-Pinchukov, Grigorii V, Molyarova, Tamara, Semenov, Dmitry A, Akimkin, Vitaly V, Sierk van Terwisga, Francheschi, Riccardo, Henning, Thomas
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Smirnov-Pinchukov, Grigorii V
Molyarova, Tamara
Semenov, Dmitry A
Akimkin, Vitaly V
Sierk van Terwisga
Francheschi, Riccardo
Henning, Thomas
description Aims. With the large amount of molecular emission data from (sub)millimeter observatories and incoming James Webb Space Telescope infrared spectroscopy, access to fast forward models of the chemical composition of protoplanetary disks is of paramount importance. Methods. We used a thermo-chemical modeling code to generate a diverse population of protoplanetary disk models. We trained a K-nearest neighbors (KNN) regressor to instantly predict the chemistry of other disk models. Results. We show that it is possible to accurately reproduce chemistry using just a small subset of physical conditions, thanks to correlations between the local physical conditions in adopted protoplanetary disk models. We discuss the uncertainties and limitations of this method. Conclusions. The proposed method can be used for Bayesian fitting of the line emission data to retrieve disk properties from observations. We present a pipeline for reproducing the same approach on other disk chemical model sets.
doi_str_mv 10.48550/arxiv.2209.13336
format article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2718736095</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2718736095</sourcerecordid><originalsourceid>FETCH-LOGICAL-a956-a4ff10b3ad5815003de753f6ee6769b2f79e68daac98528536a04ff5a8275b843</originalsourceid><addsrcrecordid>eNotjk1Lw0AURQdBsNT-AHcB16kz8_LmYylFq1Bx0315ybyxqWlSZ1LRf2_Aru7icM-9Qtwpuawconyg9NN-L7WWfqkAwFyJmQZQpau0vhGLnA9SSm2sRoSZWL9Rs297Ljqm1Lf9R0lNwx0nGjkUzZ6PbR7Tb3EcAncTLoZYnNIwDqeOeh5pQqHNn_lWXEfqMi8uORfb56ft6qXcvK9fV4-bkjyakqoYlayBAjqFUkJgixANs7HG1zpaz8YFosY71A7BkJwqSE5brF0Fc3H_r50-fJ05j7vDcE79tLjTVjkLRnqEP268ThA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2718736095</pqid></control><display><type>article</type><title>Machine learning-accelerated chemistry modeling of protoplanetary disks</title><source>Publicly Available Content Database</source><creator>Smirnov-Pinchukov, Grigorii V ; Molyarova, Tamara ; Semenov, Dmitry A ; Akimkin, Vitaly V ; Sierk van Terwisga ; Francheschi, Riccardo ; Henning, Thomas</creator><creatorcontrib>Smirnov-Pinchukov, Grigorii V ; Molyarova, Tamara ; Semenov, Dmitry A ; Akimkin, Vitaly V ; Sierk van Terwisga ; Francheschi, Riccardo ; Henning, Thomas</creatorcontrib><description>Aims. With the large amount of molecular emission data from (sub)millimeter observatories and incoming James Webb Space Telescope infrared spectroscopy, access to fast forward models of the chemical composition of protoplanetary disks is of paramount importance. Methods. We used a thermo-chemical modeling code to generate a diverse population of protoplanetary disk models. We trained a K-nearest neighbors (KNN) regressor to instantly predict the chemistry of other disk models. Results. We show that it is possible to accurately reproduce chemistry using just a small subset of physical conditions, thanks to correlations between the local physical conditions in adopted protoplanetary disk models. We discuss the uncertainties and limitations of this method. Conclusions. The proposed method can be used for Bayesian fitting of the line emission data to retrieve disk properties from observations. We present a pipeline for reproducing the same approach on other disk chemical model sets.</description><identifier>EISSN: 2331-8422</identifier><identifier>DOI: 10.48550/arxiv.2209.13336</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Chemical composition ; Infrared telescopes ; James Webb Space Telescope ; Machine learning ; Modelling ; Observatories ; Planet formation ; Protoplanetary disks ; Space telescopes</subject><ispartof>arXiv.org, 2022-09</ispartof><rights>2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2718736095?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>780,784,25752,27924,37011,44589</link.rule.ids></links><search><creatorcontrib>Smirnov-Pinchukov, Grigorii V</creatorcontrib><creatorcontrib>Molyarova, Tamara</creatorcontrib><creatorcontrib>Semenov, Dmitry A</creatorcontrib><creatorcontrib>Akimkin, Vitaly V</creatorcontrib><creatorcontrib>Sierk van Terwisga</creatorcontrib><creatorcontrib>Francheschi, Riccardo</creatorcontrib><creatorcontrib>Henning, Thomas</creatorcontrib><title>Machine learning-accelerated chemistry modeling of protoplanetary disks</title><title>arXiv.org</title><description>Aims. With the large amount of molecular emission data from (sub)millimeter observatories and incoming James Webb Space Telescope infrared spectroscopy, access to fast forward models of the chemical composition of protoplanetary disks is of paramount importance. Methods. We used a thermo-chemical modeling code to generate a diverse population of protoplanetary disk models. We trained a K-nearest neighbors (KNN) regressor to instantly predict the chemistry of other disk models. Results. We show that it is possible to accurately reproduce chemistry using just a small subset of physical conditions, thanks to correlations between the local physical conditions in adopted protoplanetary disk models. We discuss the uncertainties and limitations of this method. Conclusions. The proposed method can be used for Bayesian fitting of the line emission data to retrieve disk properties from observations. We present a pipeline for reproducing the same approach on other disk chemical model sets.</description><subject>Chemical composition</subject><subject>Infrared telescopes</subject><subject>James Webb Space Telescope</subject><subject>Machine learning</subject><subject>Modelling</subject><subject>Observatories</subject><subject>Planet formation</subject><subject>Protoplanetary disks</subject><subject>Space telescopes</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNotjk1Lw0AURQdBsNT-AHcB16kz8_LmYylFq1Bx0315ybyxqWlSZ1LRf2_Aru7icM-9Qtwpuawconyg9NN-L7WWfqkAwFyJmQZQpau0vhGLnA9SSm2sRoSZWL9Rs297Ljqm1Lf9R0lNwx0nGjkUzZ6PbR7Tb3EcAncTLoZYnNIwDqeOeh5pQqHNn_lWXEfqMi8uORfb56ft6qXcvK9fV4-bkjyakqoYlayBAjqFUkJgixANs7HG1zpaz8YFosY71A7BkJwqSE5brF0Fc3H_r50-fJ05j7vDcE79tLjTVjkLRnqEP268ThA</recordid><startdate>20220927</startdate><enddate>20220927</enddate><creator>Smirnov-Pinchukov, Grigorii V</creator><creator>Molyarova, Tamara</creator><creator>Semenov, Dmitry A</creator><creator>Akimkin, Vitaly V</creator><creator>Sierk van Terwisga</creator><creator>Francheschi, Riccardo</creator><creator>Henning, Thomas</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20220927</creationdate><title>Machine learning-accelerated chemistry modeling of protoplanetary disks</title><author>Smirnov-Pinchukov, Grigorii V ; Molyarova, Tamara ; Semenov, Dmitry A ; Akimkin, Vitaly V ; Sierk van Terwisga ; Francheschi, Riccardo ; Henning, Thomas</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a956-a4ff10b3ad5815003de753f6ee6769b2f79e68daac98528536a04ff5a8275b843</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Chemical composition</topic><topic>Infrared telescopes</topic><topic>James Webb Space Telescope</topic><topic>Machine learning</topic><topic>Modelling</topic><topic>Observatories</topic><topic>Planet formation</topic><topic>Protoplanetary disks</topic><topic>Space telescopes</topic><toplevel>online_resources</toplevel><creatorcontrib>Smirnov-Pinchukov, Grigorii V</creatorcontrib><creatorcontrib>Molyarova, Tamara</creatorcontrib><creatorcontrib>Semenov, Dmitry A</creatorcontrib><creatorcontrib>Akimkin, Vitaly V</creatorcontrib><creatorcontrib>Sierk van Terwisga</creatorcontrib><creatorcontrib>Francheschi, Riccardo</creatorcontrib><creatorcontrib>Henning, Thomas</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>arXiv.org</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Smirnov-Pinchukov, Grigorii V</au><au>Molyarova, Tamara</au><au>Semenov, Dmitry A</au><au>Akimkin, Vitaly V</au><au>Sierk van Terwisga</au><au>Francheschi, Riccardo</au><au>Henning, Thomas</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Machine learning-accelerated chemistry modeling of protoplanetary disks</atitle><jtitle>arXiv.org</jtitle><date>2022-09-27</date><risdate>2022</risdate><eissn>2331-8422</eissn><abstract>Aims. With the large amount of molecular emission data from (sub)millimeter observatories and incoming James Webb Space Telescope infrared spectroscopy, access to fast forward models of the chemical composition of protoplanetary disks is of paramount importance. Methods. We used a thermo-chemical modeling code to generate a diverse population of protoplanetary disk models. We trained a K-nearest neighbors (KNN) regressor to instantly predict the chemistry of other disk models. Results. We show that it is possible to accurately reproduce chemistry using just a small subset of physical conditions, thanks to correlations between the local physical conditions in adopted protoplanetary disk models. We discuss the uncertainties and limitations of this method. Conclusions. The proposed method can be used for Bayesian fitting of the line emission data to retrieve disk properties from observations. We present a pipeline for reproducing the same approach on other disk chemical model sets.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><doi>10.48550/arxiv.2209.13336</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2022-09
issn 2331-8422
language eng
recordid cdi_proquest_journals_2718736095
source Publicly Available Content Database
subjects Chemical composition
Infrared telescopes
James Webb Space Telescope
Machine learning
Modelling
Observatories
Planet formation
Protoplanetary disks
Space telescopes
title Machine learning-accelerated chemistry modeling of protoplanetary disks
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T14%3A50%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Machine%20learning-accelerated%20chemistry%20modeling%20of%20protoplanetary%20disks&rft.jtitle=arXiv.org&rft.au=Smirnov-Pinchukov,%20Grigorii%20V&rft.date=2022-09-27&rft.eissn=2331-8422&rft_id=info:doi/10.48550/arxiv.2209.13336&rft_dat=%3Cproquest%3E2718736095%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a956-a4ff10b3ad5815003de753f6ee6769b2f79e68daac98528536a04ff5a8275b843%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2718736095&rft_id=info:pmid/&rfr_iscdi=true