Loading…
TVLT: Textless Vision-Language Transformer
In this work, we present the Textless Vision-Language Transformer (TVLT), where homogeneous transformer blocks take raw visual and audio inputs for vision-and-language representation learning with minimal modality-specific design, and do not use text-specific modules such as tokenization or automati...
Saved in:
Published in: | arXiv.org 2022-11 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | |
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Tang, Zineng Cho, Jaemin Nie, Yixin Bansal, Mohit |
description | In this work, we present the Textless Vision-Language Transformer (TVLT), where homogeneous transformer blocks take raw visual and audio inputs for vision-and-language representation learning with minimal modality-specific design, and do not use text-specific modules such as tokenization or automatic speech recognition (ASR). TVLT is trained by reconstructing masked patches of continuous video frames and audio spectrograms (masked autoencoding) and contrastive modeling to align video and audio. TVLT attains performance comparable to its text-based counterpart on various multimodal tasks, such as visual question answering, image retrieval, video retrieval, and multimodal sentiment analysis, with 28x faster inference speed and only 1/3 of the parameters. Our findings suggest the possibility of learning compact and efficient visual-linguistic representations from low-level visual and audio signals without assuming the prior existence of text. Our code and checkpoints are available at: https://github.com/zinengtang/TVLT |
format | article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2719225220</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2719225220</sourcerecordid><originalsourceid>FETCH-proquest_journals_27192252203</originalsourceid><addsrcrecordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mTQCgnzCbFSCEmtKMlJLS5WCMsszszP0_VJzEsvTUxPVQgpSswrTssvyk0t4mFgTUvMKU7lhdLcDMpuriHOHroFRfmFpanFJfFZ-aVFeUCpeCNzQ0sjI1MjIwNj4lQBAOsaMIs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2719225220</pqid></control><display><type>article</type><title>TVLT: Textless Vision-Language Transformer</title><source>Publicly Available Content Database</source><creator>Tang, Zineng ; Cho, Jaemin ; Nie, Yixin ; Bansal, Mohit</creator><creatorcontrib>Tang, Zineng ; Cho, Jaemin ; Nie, Yixin ; Bansal, Mohit</creatorcontrib><description>In this work, we present the Textless Vision-Language Transformer (TVLT), where homogeneous transformer blocks take raw visual and audio inputs for vision-and-language representation learning with minimal modality-specific design, and do not use text-specific modules such as tokenization or automatic speech recognition (ASR). TVLT is trained by reconstructing masked patches of continuous video frames and audio spectrograms (masked autoencoding) and contrastive modeling to align video and audio. TVLT attains performance comparable to its text-based counterpart on various multimodal tasks, such as visual question answering, image retrieval, video retrieval, and multimodal sentiment analysis, with 28x faster inference speed and only 1/3 of the parameters. Our findings suggest the possibility of learning compact and efficient visual-linguistic representations from low-level visual and audio signals without assuming the prior existence of text. Our code and checkpoints are available at: https://github.com/zinengtang/TVLT</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Audio signals ; Automatic speech recognition ; Data mining ; Learning ; Representations ; Retrieval ; Spectrograms ; Transformers ; Vision ; Visual signals ; Visual tasks</subject><ispartof>arXiv.org, 2022-11</ispartof><rights>2022. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2719225220?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>780,784,25753,37012,44590</link.rule.ids></links><search><creatorcontrib>Tang, Zineng</creatorcontrib><creatorcontrib>Cho, Jaemin</creatorcontrib><creatorcontrib>Nie, Yixin</creatorcontrib><creatorcontrib>Bansal, Mohit</creatorcontrib><title>TVLT: Textless Vision-Language Transformer</title><title>arXiv.org</title><description>In this work, we present the Textless Vision-Language Transformer (TVLT), where homogeneous transformer blocks take raw visual and audio inputs for vision-and-language representation learning with minimal modality-specific design, and do not use text-specific modules such as tokenization or automatic speech recognition (ASR). TVLT is trained by reconstructing masked patches of continuous video frames and audio spectrograms (masked autoencoding) and contrastive modeling to align video and audio. TVLT attains performance comparable to its text-based counterpart on various multimodal tasks, such as visual question answering, image retrieval, video retrieval, and multimodal sentiment analysis, with 28x faster inference speed and only 1/3 of the parameters. Our findings suggest the possibility of learning compact and efficient visual-linguistic representations from low-level visual and audio signals without assuming the prior existence of text. Our code and checkpoints are available at: https://github.com/zinengtang/TVLT</description><subject>Audio signals</subject><subject>Automatic speech recognition</subject><subject>Data mining</subject><subject>Learning</subject><subject>Representations</subject><subject>Retrieval</subject><subject>Spectrograms</subject><subject>Transformers</subject><subject>Vision</subject><subject>Visual signals</subject><subject>Visual tasks</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mTQCgnzCbFSCEmtKMlJLS5WCMsszszP0_VJzEsvTUxPVQgpSswrTssvyk0t4mFgTUvMKU7lhdLcDMpuriHOHroFRfmFpanFJfFZ-aVFeUCpeCNzQ0sjI1MjIwNj4lQBAOsaMIs</recordid><startdate>20221102</startdate><enddate>20221102</enddate><creator>Tang, Zineng</creator><creator>Cho, Jaemin</creator><creator>Nie, Yixin</creator><creator>Bansal, Mohit</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20221102</creationdate><title>TVLT: Textless Vision-Language Transformer</title><author>Tang, Zineng ; Cho, Jaemin ; Nie, Yixin ; Bansal, Mohit</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_27192252203</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Audio signals</topic><topic>Automatic speech recognition</topic><topic>Data mining</topic><topic>Learning</topic><topic>Representations</topic><topic>Retrieval</topic><topic>Spectrograms</topic><topic>Transformers</topic><topic>Vision</topic><topic>Visual signals</topic><topic>Visual tasks</topic><toplevel>online_resources</toplevel><creatorcontrib>Tang, Zineng</creatorcontrib><creatorcontrib>Cho, Jaemin</creatorcontrib><creatorcontrib>Nie, Yixin</creatorcontrib><creatorcontrib>Bansal, Mohit</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tang, Zineng</au><au>Cho, Jaemin</au><au>Nie, Yixin</au><au>Bansal, Mohit</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>TVLT: Textless Vision-Language Transformer</atitle><jtitle>arXiv.org</jtitle><date>2022-11-02</date><risdate>2022</risdate><eissn>2331-8422</eissn><abstract>In this work, we present the Textless Vision-Language Transformer (TVLT), where homogeneous transformer blocks take raw visual and audio inputs for vision-and-language representation learning with minimal modality-specific design, and do not use text-specific modules such as tokenization or automatic speech recognition (ASR). TVLT is trained by reconstructing masked patches of continuous video frames and audio spectrograms (masked autoencoding) and contrastive modeling to align video and audio. TVLT attains performance comparable to its text-based counterpart on various multimodal tasks, such as visual question answering, image retrieval, video retrieval, and multimodal sentiment analysis, with 28x faster inference speed and only 1/3 of the parameters. Our findings suggest the possibility of learning compact and efficient visual-linguistic representations from low-level visual and audio signals without assuming the prior existence of text. Our code and checkpoints are available at: https://github.com/zinengtang/TVLT</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2022-11 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2719225220 |
source | Publicly Available Content Database |
subjects | Audio signals Automatic speech recognition Data mining Learning Representations Retrieval Spectrograms Transformers Vision Visual signals Visual tasks |
title | TVLT: Textless Vision-Language Transformer |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T20%3A15%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=TVLT:%20Textless%20Vision-Language%20Transformer&rft.jtitle=arXiv.org&rft.au=Tang,%20Zineng&rft.date=2022-11-02&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2719225220%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-proquest_journals_27192252203%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2719225220&rft_id=info:pmid/&rfr_iscdi=true |