Loading…
Dimensional stabilization of wood by microporous silica aerogel using in-situ polymerization
In this paper, a method for dimensional stabilization of wood through bulk hydrophobization was investigated using a sol–gel process resulting in in-situ formation of microporous SiO 2 aerogel. Two different wood species, beech ( Fagus sylvatica ) and Scots pine ( Pinus sylvestris ) were investigate...
Saved in:
Published in: | Wood science and technology 2022-09, Vol.56 (5), p.1353-1375 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c293t-fa1cb205b59f8ab74225c10aa3da13d0c7ff5925a3daf744d7fec843a2f880493 |
---|---|
cites | cdi_FETCH-LOGICAL-c293t-fa1cb205b59f8ab74225c10aa3da13d0c7ff5925a3daf744d7fec843a2f880493 |
container_end_page | 1375 |
container_issue | 5 |
container_start_page | 1353 |
container_title | Wood science and technology |
container_volume | 56 |
creator | Bak, Miklós Molnár, Ferenc Rákosa, Rita Németh, Zsolt Németh, Róbert |
description | In this paper, a method for dimensional stabilization of wood through bulk hydrophobization was investigated using a sol–gel process resulting in in-situ formation of microporous SiO
2
aerogel. Two different wood species, beech (
Fagus sylvatica
) and Scots pine (
Pinus sylvestris
) were investigated. The incorporation of microporous silica aerogel inside the cell wall and lumen was verified by scanning electron microscopy, energy dispersive spectrometry and Fourier-transform infrared spectroscopy. A leaching test using paper as model material proved the bonding of the aerogel to the cellulose component of the cell wall, which indicates a long-lasting effect of the treatment. The modification of wood with silica aerogel significantly improved its hygroscopicity and dimensional stability, decreased the equilibrium moisture content and water uptake beside a low weight percent gain. Permeability was reduced as a result of the silica aerogel deposition in the macro- and micropores of the modified wood. The treatment resulted in an obvious colour change as well. |
doi_str_mv | 10.1007/s00226-022-01412-y |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2719589633</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2719589633</sourcerecordid><originalsourceid>FETCH-LOGICAL-c293t-fa1cb205b59f8ab74225c10aa3da13d0c7ff5925a3daf744d7fec843a2f880493</originalsourceid><addsrcrecordid>eNp9UE1LxDAUDKLguvoHPAU8R_PVTXuUVVdhwYvehJC2yZKlbWpei9Rfb9YuePMyj4GZ4c0gdM3oLaNU3QGlnK9IAkKZZJxMJ2jBpOAk4zw7RQtKpSBKseIcXQDsKWVKyXyBPh58azvwoTMNhsGUvvHfZkgcB4e_QqhxOeHWVzH0IYYRMCRFZbCxMexsg0fw3Q77joAfRtyHZmptPEZcojNnGrBXx7tE70-Pb-tnsn3dvKzvt6TihRiIM6wqOc3KrHC5KZVML1eMGiNqw0RNK-VcVvDswJ2SslbOVrkUhrs8p7IQS3Qz5_YxfI4WBr0PY0yNQPNUOcuLlRBJxWdV6gIQrdN99K2Jk2ZUH1bU84o6gf5dUU_JJGYTJHG3s_Ev-h_XD6B-d8I</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2719589633</pqid></control><display><type>article</type><title>Dimensional stabilization of wood by microporous silica aerogel using in-situ polymerization</title><source>Springer Link</source><creator>Bak, Miklós ; Molnár, Ferenc ; Rákosa, Rita ; Németh, Zsolt ; Németh, Róbert</creator><creatorcontrib>Bak, Miklós ; Molnár, Ferenc ; Rákosa, Rita ; Németh, Zsolt ; Németh, Róbert</creatorcontrib><description>In this paper, a method for dimensional stabilization of wood through bulk hydrophobization was investigated using a sol–gel process resulting in in-situ formation of microporous SiO
2
aerogel. Two different wood species, beech (
Fagus sylvatica
) and Scots pine (
Pinus sylvestris
) were investigated. The incorporation of microporous silica aerogel inside the cell wall and lumen was verified by scanning electron microscopy, energy dispersive spectrometry and Fourier-transform infrared spectroscopy. A leaching test using paper as model material proved the bonding of the aerogel to the cellulose component of the cell wall, which indicates a long-lasting effect of the treatment. The modification of wood with silica aerogel significantly improved its hygroscopicity and dimensional stability, decreased the equilibrium moisture content and water uptake beside a low weight percent gain. Permeability was reduced as a result of the silica aerogel deposition in the macro- and micropores of the modified wood. The treatment resulted in an obvious colour change as well.</description><identifier>ISSN: 0043-7719</identifier><identifier>EISSN: 1432-5225</identifier><identifier>DOI: 10.1007/s00226-022-01412-y</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Beech ; Biomedical and Life Sciences ; Cell walls ; Cellulose ; Ceramics ; Composites ; Contact angle ; Dimensional stability ; Efficiency ; Fourier transforms ; Glass ; Hydrophobic surfaces ; Hygroscopicity ; In situ leaching ; Infrared spectroscopy ; Laboratories ; Leaching ; Life Sciences ; Machines ; Manufacturing ; Mechanical properties ; Moisture content ; Moisture effects ; Nanoparticles ; Natural Materials ; Original ; Permeability ; Pine trees ; Pinus sylvestris ; Polymerization ; Porous materials ; Processes ; Scanning electron microscopy ; Scientific imaging ; Silica ; Silica aerogels ; Silicon ; Silicon dioxide ; Sol-gel processes ; Spectrometry ; Water content ; Water uptake ; Wood ; Wood Science & Technology ; Wood sciences</subject><ispartof>Wood science and technology, 2022-09, Vol.56 (5), p.1353-1375</ispartof><rights>The Author(s) 2022</rights><rights>The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c293t-fa1cb205b59f8ab74225c10aa3da13d0c7ff5925a3daf744d7fec843a2f880493</citedby><cites>FETCH-LOGICAL-c293t-fa1cb205b59f8ab74225c10aa3da13d0c7ff5925a3daf744d7fec843a2f880493</cites><orcidid>0000-0003-4378-7838 ; 0000-0003-0944-3492</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Bak, Miklós</creatorcontrib><creatorcontrib>Molnár, Ferenc</creatorcontrib><creatorcontrib>Rákosa, Rita</creatorcontrib><creatorcontrib>Németh, Zsolt</creatorcontrib><creatorcontrib>Németh, Róbert</creatorcontrib><title>Dimensional stabilization of wood by microporous silica aerogel using in-situ polymerization</title><title>Wood science and technology</title><addtitle>Wood Sci Technol</addtitle><description>In this paper, a method for dimensional stabilization of wood through bulk hydrophobization was investigated using a sol–gel process resulting in in-situ formation of microporous SiO
2
aerogel. Two different wood species, beech (
Fagus sylvatica
) and Scots pine (
Pinus sylvestris
) were investigated. The incorporation of microporous silica aerogel inside the cell wall and lumen was verified by scanning electron microscopy, energy dispersive spectrometry and Fourier-transform infrared spectroscopy. A leaching test using paper as model material proved the bonding of the aerogel to the cellulose component of the cell wall, which indicates a long-lasting effect of the treatment. The modification of wood with silica aerogel significantly improved its hygroscopicity and dimensional stability, decreased the equilibrium moisture content and water uptake beside a low weight percent gain. Permeability was reduced as a result of the silica aerogel deposition in the macro- and micropores of the modified wood. The treatment resulted in an obvious colour change as well.</description><subject>Beech</subject><subject>Biomedical and Life Sciences</subject><subject>Cell walls</subject><subject>Cellulose</subject><subject>Ceramics</subject><subject>Composites</subject><subject>Contact angle</subject><subject>Dimensional stability</subject><subject>Efficiency</subject><subject>Fourier transforms</subject><subject>Glass</subject><subject>Hydrophobic surfaces</subject><subject>Hygroscopicity</subject><subject>In situ leaching</subject><subject>Infrared spectroscopy</subject><subject>Laboratories</subject><subject>Leaching</subject><subject>Life Sciences</subject><subject>Machines</subject><subject>Manufacturing</subject><subject>Mechanical properties</subject><subject>Moisture content</subject><subject>Moisture effects</subject><subject>Nanoparticles</subject><subject>Natural Materials</subject><subject>Original</subject><subject>Permeability</subject><subject>Pine trees</subject><subject>Pinus sylvestris</subject><subject>Polymerization</subject><subject>Porous materials</subject><subject>Processes</subject><subject>Scanning electron microscopy</subject><subject>Scientific imaging</subject><subject>Silica</subject><subject>Silica aerogels</subject><subject>Silicon</subject><subject>Silicon dioxide</subject><subject>Sol-gel processes</subject><subject>Spectrometry</subject><subject>Water content</subject><subject>Water uptake</subject><subject>Wood</subject><subject>Wood Science & Technology</subject><subject>Wood sciences</subject><issn>0043-7719</issn><issn>1432-5225</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9UE1LxDAUDKLguvoHPAU8R_PVTXuUVVdhwYvehJC2yZKlbWpei9Rfb9YuePMyj4GZ4c0gdM3oLaNU3QGlnK9IAkKZZJxMJ2jBpOAk4zw7RQtKpSBKseIcXQDsKWVKyXyBPh58azvwoTMNhsGUvvHfZkgcB4e_QqhxOeHWVzH0IYYRMCRFZbCxMexsg0fw3Q77joAfRtyHZmptPEZcojNnGrBXx7tE70-Pb-tnsn3dvKzvt6TihRiIM6wqOc3KrHC5KZVML1eMGiNqw0RNK-VcVvDswJ2SslbOVrkUhrs8p7IQS3Qz5_YxfI4WBr0PY0yNQPNUOcuLlRBJxWdV6gIQrdN99K2Jk2ZUH1bU84o6gf5dUU_JJGYTJHG3s_Ev-h_XD6B-d8I</recordid><startdate>20220901</startdate><enddate>20220901</enddate><creator>Bak, Miklós</creator><creator>Molnár, Ferenc</creator><creator>Rákosa, Rita</creator><creator>Németh, Zsolt</creator><creator>Németh, Róbert</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYCSY</scope><orcidid>https://orcid.org/0000-0003-4378-7838</orcidid><orcidid>https://orcid.org/0000-0003-0944-3492</orcidid></search><sort><creationdate>20220901</creationdate><title>Dimensional stabilization of wood by microporous silica aerogel using in-situ polymerization</title><author>Bak, Miklós ; Molnár, Ferenc ; Rákosa, Rita ; Németh, Zsolt ; Németh, Róbert</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c293t-fa1cb205b59f8ab74225c10aa3da13d0c7ff5925a3daf744d7fec843a2f880493</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Beech</topic><topic>Biomedical and Life Sciences</topic><topic>Cell walls</topic><topic>Cellulose</topic><topic>Ceramics</topic><topic>Composites</topic><topic>Contact angle</topic><topic>Dimensional stability</topic><topic>Efficiency</topic><topic>Fourier transforms</topic><topic>Glass</topic><topic>Hydrophobic surfaces</topic><topic>Hygroscopicity</topic><topic>In situ leaching</topic><topic>Infrared spectroscopy</topic><topic>Laboratories</topic><topic>Leaching</topic><topic>Life Sciences</topic><topic>Machines</topic><topic>Manufacturing</topic><topic>Mechanical properties</topic><topic>Moisture content</topic><topic>Moisture effects</topic><topic>Nanoparticles</topic><topic>Natural Materials</topic><topic>Original</topic><topic>Permeability</topic><topic>Pine trees</topic><topic>Pinus sylvestris</topic><topic>Polymerization</topic><topic>Porous materials</topic><topic>Processes</topic><topic>Scanning electron microscopy</topic><topic>Scientific imaging</topic><topic>Silica</topic><topic>Silica aerogels</topic><topic>Silicon</topic><topic>Silicon dioxide</topic><topic>Sol-gel processes</topic><topic>Spectrometry</topic><topic>Water content</topic><topic>Water uptake</topic><topic>Wood</topic><topic>Wood Science & Technology</topic><topic>Wood sciences</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bak, Miklós</creatorcontrib><creatorcontrib>Molnár, Ferenc</creatorcontrib><creatorcontrib>Rákosa, Rita</creatorcontrib><creatorcontrib>Németh, Zsolt</creatorcontrib><creatorcontrib>Németh, Róbert</creatorcontrib><collection>Springer_OA刊</collection><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>Environmental Science Database</collection><collection>Materials science collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Environmental Science Collection</collection><jtitle>Wood science and technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bak, Miklós</au><au>Molnár, Ferenc</au><au>Rákosa, Rita</au><au>Németh, Zsolt</au><au>Németh, Róbert</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dimensional stabilization of wood by microporous silica aerogel using in-situ polymerization</atitle><jtitle>Wood science and technology</jtitle><stitle>Wood Sci Technol</stitle><date>2022-09-01</date><risdate>2022</risdate><volume>56</volume><issue>5</issue><spage>1353</spage><epage>1375</epage><pages>1353-1375</pages><issn>0043-7719</issn><eissn>1432-5225</eissn><abstract>In this paper, a method for dimensional stabilization of wood through bulk hydrophobization was investigated using a sol–gel process resulting in in-situ formation of microporous SiO
2
aerogel. Two different wood species, beech (
Fagus sylvatica
) and Scots pine (
Pinus sylvestris
) were investigated. The incorporation of microporous silica aerogel inside the cell wall and lumen was verified by scanning electron microscopy, energy dispersive spectrometry and Fourier-transform infrared spectroscopy. A leaching test using paper as model material proved the bonding of the aerogel to the cellulose component of the cell wall, which indicates a long-lasting effect of the treatment. The modification of wood with silica aerogel significantly improved its hygroscopicity and dimensional stability, decreased the equilibrium moisture content and water uptake beside a low weight percent gain. Permeability was reduced as a result of the silica aerogel deposition in the macro- and micropores of the modified wood. The treatment resulted in an obvious colour change as well.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00226-022-01412-y</doi><tpages>23</tpages><orcidid>https://orcid.org/0000-0003-4378-7838</orcidid><orcidid>https://orcid.org/0000-0003-0944-3492</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0043-7719 |
ispartof | Wood science and technology, 2022-09, Vol.56 (5), p.1353-1375 |
issn | 0043-7719 1432-5225 |
language | eng |
recordid | cdi_proquest_journals_2719589633 |
source | Springer Link |
subjects | Beech Biomedical and Life Sciences Cell walls Cellulose Ceramics Composites Contact angle Dimensional stability Efficiency Fourier transforms Glass Hydrophobic surfaces Hygroscopicity In situ leaching Infrared spectroscopy Laboratories Leaching Life Sciences Machines Manufacturing Mechanical properties Moisture content Moisture effects Nanoparticles Natural Materials Original Permeability Pine trees Pinus sylvestris Polymerization Porous materials Processes Scanning electron microscopy Scientific imaging Silica Silica aerogels Silicon Silicon dioxide Sol-gel processes Spectrometry Water content Water uptake Wood Wood Science & Technology Wood sciences |
title | Dimensional stabilization of wood by microporous silica aerogel using in-situ polymerization |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T08%3A47%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dimensional%20stabilization%20of%20wood%20by%20microporous%20silica%20aerogel%20using%20in-situ%20polymerization&rft.jtitle=Wood%20science%20and%20technology&rft.au=Bak,%20Mikl%C3%B3s&rft.date=2022-09-01&rft.volume=56&rft.issue=5&rft.spage=1353&rft.epage=1375&rft.pages=1353-1375&rft.issn=0043-7719&rft.eissn=1432-5225&rft_id=info:doi/10.1007/s00226-022-01412-y&rft_dat=%3Cproquest_cross%3E2719589633%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c293t-fa1cb205b59f8ab74225c10aa3da13d0c7ff5925a3daf744d7fec843a2f880493%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2719589633&rft_id=info:pmid/&rfr_iscdi=true |