Loading…

Dimensional stabilization of wood by microporous silica aerogel using in-situ polymerization

In this paper, a method for dimensional stabilization of wood through bulk hydrophobization was investigated using a sol–gel process resulting in in-situ formation of microporous SiO 2 aerogel. Two different wood species, beech ( Fagus sylvatica ) and Scots pine ( Pinus sylvestris ) were investigate...

Full description

Saved in:
Bibliographic Details
Published in:Wood science and technology 2022-09, Vol.56 (5), p.1353-1375
Main Authors: Bak, Miklós, Molnár, Ferenc, Rákosa, Rita, Németh, Zsolt, Németh, Róbert
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c293t-fa1cb205b59f8ab74225c10aa3da13d0c7ff5925a3daf744d7fec843a2f880493
cites cdi_FETCH-LOGICAL-c293t-fa1cb205b59f8ab74225c10aa3da13d0c7ff5925a3daf744d7fec843a2f880493
container_end_page 1375
container_issue 5
container_start_page 1353
container_title Wood science and technology
container_volume 56
creator Bak, Miklós
Molnár, Ferenc
Rákosa, Rita
Németh, Zsolt
Németh, Róbert
description In this paper, a method for dimensional stabilization of wood through bulk hydrophobization was investigated using a sol–gel process resulting in in-situ formation of microporous SiO 2 aerogel. Two different wood species, beech ( Fagus sylvatica ) and Scots pine ( Pinus sylvestris ) were investigated. The incorporation of microporous silica aerogel inside the cell wall and lumen was verified by scanning electron microscopy, energy dispersive spectrometry and Fourier-transform infrared spectroscopy. A leaching test using paper as model material proved the bonding of the aerogel to the cellulose component of the cell wall, which indicates a long-lasting effect of the treatment. The modification of wood with silica aerogel significantly improved its hygroscopicity and dimensional stability, decreased the equilibrium moisture content and water uptake beside a low weight percent gain. Permeability was reduced as a result of the silica aerogel deposition in the macro- and micropores of the modified wood. The treatment resulted in an obvious colour change as well.
doi_str_mv 10.1007/s00226-022-01412-y
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2719589633</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2719589633</sourcerecordid><originalsourceid>FETCH-LOGICAL-c293t-fa1cb205b59f8ab74225c10aa3da13d0c7ff5925a3daf744d7fec843a2f880493</originalsourceid><addsrcrecordid>eNp9UE1LxDAUDKLguvoHPAU8R_PVTXuUVVdhwYvehJC2yZKlbWpei9Rfb9YuePMyj4GZ4c0gdM3oLaNU3QGlnK9IAkKZZJxMJ2jBpOAk4zw7RQtKpSBKseIcXQDsKWVKyXyBPh58azvwoTMNhsGUvvHfZkgcB4e_QqhxOeHWVzH0IYYRMCRFZbCxMexsg0fw3Q77joAfRtyHZmptPEZcojNnGrBXx7tE70-Pb-tnsn3dvKzvt6TihRiIM6wqOc3KrHC5KZVML1eMGiNqw0RNK-VcVvDswJ2SslbOVrkUhrs8p7IQS3Qz5_YxfI4WBr0PY0yNQPNUOcuLlRBJxWdV6gIQrdN99K2Jk2ZUH1bU84o6gf5dUU_JJGYTJHG3s_Ev-h_XD6B-d8I</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2719589633</pqid></control><display><type>article</type><title>Dimensional stabilization of wood by microporous silica aerogel using in-situ polymerization</title><source>Springer Link</source><creator>Bak, Miklós ; Molnár, Ferenc ; Rákosa, Rita ; Németh, Zsolt ; Németh, Róbert</creator><creatorcontrib>Bak, Miklós ; Molnár, Ferenc ; Rákosa, Rita ; Németh, Zsolt ; Németh, Róbert</creatorcontrib><description>In this paper, a method for dimensional stabilization of wood through bulk hydrophobization was investigated using a sol–gel process resulting in in-situ formation of microporous SiO 2 aerogel. Two different wood species, beech ( Fagus sylvatica ) and Scots pine ( Pinus sylvestris ) were investigated. The incorporation of microporous silica aerogel inside the cell wall and lumen was verified by scanning electron microscopy, energy dispersive spectrometry and Fourier-transform infrared spectroscopy. A leaching test using paper as model material proved the bonding of the aerogel to the cellulose component of the cell wall, which indicates a long-lasting effect of the treatment. The modification of wood with silica aerogel significantly improved its hygroscopicity and dimensional stability, decreased the equilibrium moisture content and water uptake beside a low weight percent gain. Permeability was reduced as a result of the silica aerogel deposition in the macro- and micropores of the modified wood. The treatment resulted in an obvious colour change as well.</description><identifier>ISSN: 0043-7719</identifier><identifier>EISSN: 1432-5225</identifier><identifier>DOI: 10.1007/s00226-022-01412-y</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Beech ; Biomedical and Life Sciences ; Cell walls ; Cellulose ; Ceramics ; Composites ; Contact angle ; Dimensional stability ; Efficiency ; Fourier transforms ; Glass ; Hydrophobic surfaces ; Hygroscopicity ; In situ leaching ; Infrared spectroscopy ; Laboratories ; Leaching ; Life Sciences ; Machines ; Manufacturing ; Mechanical properties ; Moisture content ; Moisture effects ; Nanoparticles ; Natural Materials ; Original ; Permeability ; Pine trees ; Pinus sylvestris ; Polymerization ; Porous materials ; Processes ; Scanning electron microscopy ; Scientific imaging ; Silica ; Silica aerogels ; Silicon ; Silicon dioxide ; Sol-gel processes ; Spectrometry ; Water content ; Water uptake ; Wood ; Wood Science &amp; Technology ; Wood sciences</subject><ispartof>Wood science and technology, 2022-09, Vol.56 (5), p.1353-1375</ispartof><rights>The Author(s) 2022</rights><rights>The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c293t-fa1cb205b59f8ab74225c10aa3da13d0c7ff5925a3daf744d7fec843a2f880493</citedby><cites>FETCH-LOGICAL-c293t-fa1cb205b59f8ab74225c10aa3da13d0c7ff5925a3daf744d7fec843a2f880493</cites><orcidid>0000-0003-4378-7838 ; 0000-0003-0944-3492</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Bak, Miklós</creatorcontrib><creatorcontrib>Molnár, Ferenc</creatorcontrib><creatorcontrib>Rákosa, Rita</creatorcontrib><creatorcontrib>Németh, Zsolt</creatorcontrib><creatorcontrib>Németh, Róbert</creatorcontrib><title>Dimensional stabilization of wood by microporous silica aerogel using in-situ polymerization</title><title>Wood science and technology</title><addtitle>Wood Sci Technol</addtitle><description>In this paper, a method for dimensional stabilization of wood through bulk hydrophobization was investigated using a sol–gel process resulting in in-situ formation of microporous SiO 2 aerogel. Two different wood species, beech ( Fagus sylvatica ) and Scots pine ( Pinus sylvestris ) were investigated. The incorporation of microporous silica aerogel inside the cell wall and lumen was verified by scanning electron microscopy, energy dispersive spectrometry and Fourier-transform infrared spectroscopy. A leaching test using paper as model material proved the bonding of the aerogel to the cellulose component of the cell wall, which indicates a long-lasting effect of the treatment. The modification of wood with silica aerogel significantly improved its hygroscopicity and dimensional stability, decreased the equilibrium moisture content and water uptake beside a low weight percent gain. Permeability was reduced as a result of the silica aerogel deposition in the macro- and micropores of the modified wood. The treatment resulted in an obvious colour change as well.</description><subject>Beech</subject><subject>Biomedical and Life Sciences</subject><subject>Cell walls</subject><subject>Cellulose</subject><subject>Ceramics</subject><subject>Composites</subject><subject>Contact angle</subject><subject>Dimensional stability</subject><subject>Efficiency</subject><subject>Fourier transforms</subject><subject>Glass</subject><subject>Hydrophobic surfaces</subject><subject>Hygroscopicity</subject><subject>In situ leaching</subject><subject>Infrared spectroscopy</subject><subject>Laboratories</subject><subject>Leaching</subject><subject>Life Sciences</subject><subject>Machines</subject><subject>Manufacturing</subject><subject>Mechanical properties</subject><subject>Moisture content</subject><subject>Moisture effects</subject><subject>Nanoparticles</subject><subject>Natural Materials</subject><subject>Original</subject><subject>Permeability</subject><subject>Pine trees</subject><subject>Pinus sylvestris</subject><subject>Polymerization</subject><subject>Porous materials</subject><subject>Processes</subject><subject>Scanning electron microscopy</subject><subject>Scientific imaging</subject><subject>Silica</subject><subject>Silica aerogels</subject><subject>Silicon</subject><subject>Silicon dioxide</subject><subject>Sol-gel processes</subject><subject>Spectrometry</subject><subject>Water content</subject><subject>Water uptake</subject><subject>Wood</subject><subject>Wood Science &amp; Technology</subject><subject>Wood sciences</subject><issn>0043-7719</issn><issn>1432-5225</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9UE1LxDAUDKLguvoHPAU8R_PVTXuUVVdhwYvehJC2yZKlbWpei9Rfb9YuePMyj4GZ4c0gdM3oLaNU3QGlnK9IAkKZZJxMJ2jBpOAk4zw7RQtKpSBKseIcXQDsKWVKyXyBPh58azvwoTMNhsGUvvHfZkgcB4e_QqhxOeHWVzH0IYYRMCRFZbCxMexsg0fw3Q77joAfRtyHZmptPEZcojNnGrBXx7tE70-Pb-tnsn3dvKzvt6TihRiIM6wqOc3KrHC5KZVML1eMGiNqw0RNK-VcVvDswJ2SslbOVrkUhrs8p7IQS3Qz5_YxfI4WBr0PY0yNQPNUOcuLlRBJxWdV6gIQrdN99K2Jk2ZUH1bU84o6gf5dUU_JJGYTJHG3s_Ev-h_XD6B-d8I</recordid><startdate>20220901</startdate><enddate>20220901</enddate><creator>Bak, Miklós</creator><creator>Molnár, Ferenc</creator><creator>Rákosa, Rita</creator><creator>Németh, Zsolt</creator><creator>Németh, Róbert</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYCSY</scope><orcidid>https://orcid.org/0000-0003-4378-7838</orcidid><orcidid>https://orcid.org/0000-0003-0944-3492</orcidid></search><sort><creationdate>20220901</creationdate><title>Dimensional stabilization of wood by microporous silica aerogel using in-situ polymerization</title><author>Bak, Miklós ; Molnár, Ferenc ; Rákosa, Rita ; Németh, Zsolt ; Németh, Róbert</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c293t-fa1cb205b59f8ab74225c10aa3da13d0c7ff5925a3daf744d7fec843a2f880493</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Beech</topic><topic>Biomedical and Life Sciences</topic><topic>Cell walls</topic><topic>Cellulose</topic><topic>Ceramics</topic><topic>Composites</topic><topic>Contact angle</topic><topic>Dimensional stability</topic><topic>Efficiency</topic><topic>Fourier transforms</topic><topic>Glass</topic><topic>Hydrophobic surfaces</topic><topic>Hygroscopicity</topic><topic>In situ leaching</topic><topic>Infrared spectroscopy</topic><topic>Laboratories</topic><topic>Leaching</topic><topic>Life Sciences</topic><topic>Machines</topic><topic>Manufacturing</topic><topic>Mechanical properties</topic><topic>Moisture content</topic><topic>Moisture effects</topic><topic>Nanoparticles</topic><topic>Natural Materials</topic><topic>Original</topic><topic>Permeability</topic><topic>Pine trees</topic><topic>Pinus sylvestris</topic><topic>Polymerization</topic><topic>Porous materials</topic><topic>Processes</topic><topic>Scanning electron microscopy</topic><topic>Scientific imaging</topic><topic>Silica</topic><topic>Silica aerogels</topic><topic>Silicon</topic><topic>Silicon dioxide</topic><topic>Sol-gel processes</topic><topic>Spectrometry</topic><topic>Water content</topic><topic>Water uptake</topic><topic>Wood</topic><topic>Wood Science &amp; Technology</topic><topic>Wood sciences</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bak, Miklós</creatorcontrib><creatorcontrib>Molnár, Ferenc</creatorcontrib><creatorcontrib>Rákosa, Rita</creatorcontrib><creatorcontrib>Németh, Zsolt</creatorcontrib><creatorcontrib>Németh, Róbert</creatorcontrib><collection>Springer_OA刊</collection><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>Environmental Science Database</collection><collection>Materials science collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Environmental Science Collection</collection><jtitle>Wood science and technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bak, Miklós</au><au>Molnár, Ferenc</au><au>Rákosa, Rita</au><au>Németh, Zsolt</au><au>Németh, Róbert</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dimensional stabilization of wood by microporous silica aerogel using in-situ polymerization</atitle><jtitle>Wood science and technology</jtitle><stitle>Wood Sci Technol</stitle><date>2022-09-01</date><risdate>2022</risdate><volume>56</volume><issue>5</issue><spage>1353</spage><epage>1375</epage><pages>1353-1375</pages><issn>0043-7719</issn><eissn>1432-5225</eissn><abstract>In this paper, a method for dimensional stabilization of wood through bulk hydrophobization was investigated using a sol–gel process resulting in in-situ formation of microporous SiO 2 aerogel. Two different wood species, beech ( Fagus sylvatica ) and Scots pine ( Pinus sylvestris ) were investigated. The incorporation of microporous silica aerogel inside the cell wall and lumen was verified by scanning electron microscopy, energy dispersive spectrometry and Fourier-transform infrared spectroscopy. A leaching test using paper as model material proved the bonding of the aerogel to the cellulose component of the cell wall, which indicates a long-lasting effect of the treatment. The modification of wood with silica aerogel significantly improved its hygroscopicity and dimensional stability, decreased the equilibrium moisture content and water uptake beside a low weight percent gain. Permeability was reduced as a result of the silica aerogel deposition in the macro- and micropores of the modified wood. The treatment resulted in an obvious colour change as well.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00226-022-01412-y</doi><tpages>23</tpages><orcidid>https://orcid.org/0000-0003-4378-7838</orcidid><orcidid>https://orcid.org/0000-0003-0944-3492</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0043-7719
ispartof Wood science and technology, 2022-09, Vol.56 (5), p.1353-1375
issn 0043-7719
1432-5225
language eng
recordid cdi_proquest_journals_2719589633
source Springer Link
subjects Beech
Biomedical and Life Sciences
Cell walls
Cellulose
Ceramics
Composites
Contact angle
Dimensional stability
Efficiency
Fourier transforms
Glass
Hydrophobic surfaces
Hygroscopicity
In situ leaching
Infrared spectroscopy
Laboratories
Leaching
Life Sciences
Machines
Manufacturing
Mechanical properties
Moisture content
Moisture effects
Nanoparticles
Natural Materials
Original
Permeability
Pine trees
Pinus sylvestris
Polymerization
Porous materials
Processes
Scanning electron microscopy
Scientific imaging
Silica
Silica aerogels
Silicon
Silicon dioxide
Sol-gel processes
Spectrometry
Water content
Water uptake
Wood
Wood Science & Technology
Wood sciences
title Dimensional stabilization of wood by microporous silica aerogel using in-situ polymerization
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T08%3A47%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dimensional%20stabilization%20of%20wood%20by%20microporous%20silica%20aerogel%20using%20in-situ%20polymerization&rft.jtitle=Wood%20science%20and%20technology&rft.au=Bak,%20Mikl%C3%B3s&rft.date=2022-09-01&rft.volume=56&rft.issue=5&rft.spage=1353&rft.epage=1375&rft.pages=1353-1375&rft.issn=0043-7719&rft.eissn=1432-5225&rft_id=info:doi/10.1007/s00226-022-01412-y&rft_dat=%3Cproquest_cross%3E2719589633%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c293t-fa1cb205b59f8ab74225c10aa3da13d0c7ff5925a3daf744d7fec843a2f880493%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2719589633&rft_id=info:pmid/&rfr_iscdi=true